K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

TA CÓ :

\(10a+4b⋮13\)

\(\Rightarrow\left(a+b\right)+9a+3b⋮13\)

\(\Rightarrow a+b⋮13\left(đpcm\right)\)

25 tháng 11 2015

bài này bạn tự nghĩ đi

2 tháng 6 2015

xét A=4(10a+b)-(a+4b)

=40a+4b-a-4b

=39a

=>A chia hết cho 39

do A chia hết cho 39,a+4b chia hết cho 39

=>4(10a+b ) chia hết cho 39

do (4,39)=1

=>10a+b chia hết cho 39

vậy nếu a+4b chia hết cho 39 thì 10a+b chia hết cho 39

a+4b chia hết cho 13

=>10a+40b chia hết cho 13

=>10a+40b-39b chia hết cho 13

=>10a+b chia hết cho 13

=>đpcm

12 tháng 12 2017

ta có:\(10a+b⋮13\Rightarrow40a+4b⋮13\)

\(\Leftrightarrow39a+\left(a+4b\right)⋮13\)

\(39a⋮13\Rightarrow a+4b⋮13\left(đpcm\right)\)

27 tháng 10 2023

Mình đang cần gấp ạ

10 tháng 12 2021
10 bạn đầu tiên trả lời tick .Phải làm đúng đó
15 tháng 7 2015

Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1).

Lấy (1) - 39b (luôn chia hết cho 13) đc 10a +b

\(\Rightarrow\) 10a + b chia hết cho 13. (đpcm)

Ngược lại cũng tương tự.

15 tháng 7 2015

a+4b chia hết cho 13

=>10(a+4b)chia hết cho 13 

=>10a+40bchia hết cho 13 (1)

giả sử 10a+b chia hết cho 13 (2)

từ (1)và (2)

 =>(10a+40b)-(10a+40b)chia hết cho 13

=>10a+40b-10a-40b chia hết cho 13

=>39a chia hết cho 13

=>13(3a)chia hết cho 13(thỏa mãn)☺

5 tháng 7 2015

\(10a+b=\left(10a+40b\right)-39b=10\left(a+4b\right)-39b\)

ta có: a+4b chia hết cho 13 => 10(a+4b) chia hết cho 13

39b=13.3b => chia hết cho 13

=> 10a+b chia hết cho 13

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^