bài 2: chứng minh
a)(n+10):(n+15) chia hết cho 2
b)n.(n+1).(n+2) chia hết cho 2 và 3
c)n.(n+1).(n+1) chia hết cho 2 và 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình biết cách làm
đó mai mình
chỉ cho nhé vì
mình cũng làm bài
này nhiều rùi
a. Xét n chẵn
=> n + 10 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Xét n lẻ
=> n + 15 chẵn
=> (n + 10) (n + 15) chẵn => chia hết cho 2
Vậy (n + 10) (n + 15) chia hết cho 2 với mọi n
b. n (n + 1) (n + 2)
=> n + n + 1 + n + 2
=> 3n + 3
Ta có : 3n chia hết cho 3 ; 3 chia hết cho 3
=> 3n + 3 chia hết cho 3
Ta có n (n + 1) là tích hai số liên tiếp chia hết cho 2
Ta có n (n + 2) tích hai số liên tiếp chia hết cho 2
Và n (n + 2) = n.n + n.2 = 2n . n2 có cơ số 2 nên chia hết cho 2.
c. n (n + 1) (2n + 1) = n (n + 1) (n + 2 + n - 1) = n (n + 1) (n + 2) (n - 1) (n + 1) n
Các số trên là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 và chia hết cho 2
a) vì n thuộc N, ta có:
TH1: n là số lẻ
=> n+15 là số chẵn => n+15 chia hết cho 2=> (n+10).(n+15) chia hết cho 2
TH2: n là số chẵn
=> n+10 là số chẵn=> n+10 chia hết cho 2=> (n+10).(n+15) chia hết cho 2
Vậy với mọi n thuộc N => (n+10).(n+15) chia hết cho 2
b) vì n thuộc N
=> n, n+1, n+2 là 3 số tự nhiên liên tiếp => một trong ba số chia hết cho 3=> n.(n+1).(n+2) chia hết cho 3
xét TH1: n là số lẻ
=> n+1 là số chẵn => n+1 chia hết cho 2=>n.(n+1).(n+2) chia hết cho 2
xét TH2: n là số chẵn
=> n+2 và n là số chẵn => n chia hết cho 2, n+2 chia hết cho 2=>n.(n+1).(n+2) chia hết cho 2
vậy với mọi n thuộc N thì n.(n+1).(n+2) chia hết cho 2,3
Mình chỉ biết làm ý a thôi, ý bc chắc cũng tương tự,
bài cho n là số tự nhiên vậy n có thể là số chẵn hoặc là số lẻ,
a, trong biểu thức (n+10)(n+15) ta xét hai trường hợp
+)trường hợp 1: n lẻ, ta có: (n+10) sẽ là số lẻ; (n+15) sẽ là số chẵn. (n+10)(n+15) là tích của một số lẻ với một số chẵn , vậy kết quả sẽ là số chẵn và chia hết cho 2
+)trường hợp 2: n chẵn, ta có: (n+10) sẽ là số chẵn;(n+15) sẽ là số lẻ. (n+10)(n+15) là tích của một số chẵn và một số lẻ, vậy kết quả sẽ là số chẵn và chia hết cho 2
a) Ta có n là số tự nhiên nên n chẵn hoặc n lẻ
nếu n chẵn thì n +10 chẵn nên n+ 10 chia hết cho 2. Do đó (n+10)(n+15) chia hết cho 2
nếu n lẻ thì n + 15 chẵn nên n+15 chia hết cho 2. Do đó (n+10)(n+15) chia hết cho 2
Vậy (n+10)(n+15) chia hết cho 2
b) c) tương tự
a)*Với n lẻ
=>n+15 chẵn
=>(n+10).(n+15) chia hết cho 2
*Với n chẵn
=>n+10 chẵn
=>(n+10).(n+15) chia hết cho 2
=>ĐPCM
b)Vì n và n+1 là 2 số tự nhiên liên tiếp
=>n.(n+1) chia hết cho 2
=>n.(n+1).(n+2) chia hết cho 2
Vì n, n+1 và n+2 là 3 số tự nhiên liên tiếp
=>n.(n+1).(n+2) chia hết cho 3
Vậy n.(n+1).(n+2) chia hết cho 2 và 3
c) Vì n và n+1 là 2 số tự nhiên liên tiếp
=>n.(n+1) chia hết cho 2
=>n.(n+1).(n+2) chia hết cho 2
Vì n là số tự nhiên
=>n có 3 dạng là 3k,3k+1,3k+2
*Với n=3k=>n chia hết cho 3
=>n.(n+1).(n+2) chia hết cho 3
*Với n=3k+1
=>2n+1=2.(3k+1)+1=2.3k+2+1=3.2k+3=3.(2k+1) chia hết cho 3
=>n.(n+1).(n+2) chia hết cho 3
*Với n=3k+2
=>n+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3
=>n.(n+1).(n+2) chia hết cho 3
Vậy n.(n+1).(n+2) chia hết cho 2 và 3
70.a,nếu n chẵn thì n+10 chẵn chia hết cho 2,nếu n lẻ thì n+15 chẵn chia hết cho 2(vì bất kì một số nào nhân với số chẵn đều ra số chẵn)
làm tương tự vậy là được thui
A=13!-11!=11!.(12.13-1)=11!.155=1.2.3.4.5.....11.155
vì trong tích có các thừa soos2,5,155 nên A chia hết cho 2,5,155
Vì n là số tự nhiên nên sảy ra 2 trường hợp
+ n là số chẵn thì n có dạng 2a
Thay n = 2a ta có : (n + 10) ( n + 15) = (2a + 10)(n + 15)
= 2(a + 5)(n + 15) chia hết cho 2
+ n là số lẻ thì n có dạng 2a + 1
Thay n = 2a + 1 ta có : (n + 10)(n + 15) = (2a + 11)(2a + 16)
= 2(2a + 11)(a + 8) chia hết cho 2
Vậy với mọi số tự nhiên n thì (n + 10)(n + 15) chia hết cho 2 (đpcm)