K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2015

\(\sqrt{\left(2x-1\right)^2=3}\)

<=> |2x - 1| = 3

*) Với x >= 1/2

=> 2x - 1 = 3

<=> 2x = 4

<=> x = 2 (TM)

*) Với x < 1/2

=> -2x + 1 = 3

-2x = 2

x = -1 (TM)

Vậy x = 2 hoặc x = -1

4 tháng 12 2015

\(\sqrt{\left(2x-1\right)^2}=3=\sqrt{9}\)

\(\Leftrightarrow\left(2x-1\right)^2=9\Leftrightarrow\left(2x-1\right)^2-3^2=0\)

\(\Leftrightarrow\left(2x-1-3\right)\left(2x-1+3\right)=0\)

\(\Leftrightarrow\left(2x-4\right)\left(2x+2\right)=0\Leftrightarrow4\left(x-2\right)\left(x+1\right)=0\)

=>\(x-1=0\Leftrightarrow x=1\)

=>\(x+1=0\Leftrightarrow x=-1\)

Vậy S = {-1;1}

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Để phương trình có vô số nghiệm thì m=3

20 tháng 8 2021

Yêu cầu đề?

20 tháng 8 2021

m mem đề đâu 

31 tháng 7 2019

<=>\(\left(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}\right)^2=\left(\sqrt{2\left(\sqrt{2}-1\right)}\right)^2\)

<=>\(\sqrt{2}+1+\sqrt{2}-1-2\left(\sqrt{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\right)=2\left(\sqrt{2}-1\right)\)

<=>\(2\sqrt{2}-2=2\sqrt{2}-2\left(dpcm\right)\)

¬¬¬¬¬¬hoc tot ¬¬¬¬¬¬¬

\(\Leftrightarrow\left(x+3\right)\sqrt{2x^2+1}-\left(x+3\right)=x^2\)

=>\(\left(x+3\right)\cdot\left(\sqrt{2x^2+1}-1\right)=x^2\)

=>\(\left(x+3\right)\cdot\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}-x^2=0\)

=>\(x^2\left(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}-1\right)=0\)

=>x^2=0 hoặc \(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}=1\)

=>\(\left[{}\begin{matrix}x=0\\\sqrt{2x^2+1}+1=2x+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+1=\left(2x+5\right)^2;x>=-\dfrac{5}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\4x^2+20x+25-2x^2-1=0;x>=-\dfrac{5}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}2x^2+20x+24=0\\x>=-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5+\sqrt{13}\end{matrix}\right.\)

=>Phương trình này có 2 nghiệm

31 tháng 8 2023

Tks bạn ạ

 

3 tháng 9 2023

1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)

Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)

\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)

\(P\ge4\sqrt{xy}\left(x+y\right)^2\)

Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\)  (*)

Thật vậy, (*)

\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)

\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)

\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)

Áp dụng BĐT Cô-si, ta được:

VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)

Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\)

Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)

 Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)

Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)

29 tháng 7 2021

Bài 4: 

a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))

\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3

\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)

\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)

\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)

\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)

\(\Leftrightarrow\) \(2x^2+7x+3=0\)

\(\Delta=7^2-4.2.3=25\)\(\sqrt{\Delta}=5\)

Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:

\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)

Vậy ...

Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được

Bài 5: 

a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)

\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)

Vậy ...

Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\)\(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!

VD1:

a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)

\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)

\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)

Vậy ...

Phần b tương tự nha

c, \(\sqrt{3}x^2-\sqrt{12}=0\)

\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)

\(\Leftrightarrow\) \(x^2=2\)

\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)

Vậy ...

d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)

\(\Leftrightarrow\) \(x-1=5\)

\(\Leftrightarrow\) \(x=6\)

Vậy ...

VD2: 

Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))

\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(x^2=3\)

\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)

Vậy ...

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x^2-4x=0\)

\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

29 tháng 7 2021

cảm ơn bn nhiều nha

1 tháng 11 2016

Đặt \(\hept{\begin{cases}\sqrt{5-x}=a\\\sqrt{x-3}=b\end{cases}}\)

=> a2 + b2 = 2

PT \(\Leftrightarrow\frac{a^3+b^3}{a+b}=2\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a+b}=2\)

\(\Leftrightarrow2-ab=2\Leftrightarrow ab=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{5-x}=0\\\sqrt{x-3}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)

15 tháng 6 2017

hạ sách nhân liên hợp =))

\(pt\Leftrightarrow\sqrt{x^4+4x^3+8x^2+8x+4}-\sqrt{x^4+2x^3+3x^2+2x+1}=2017\)

\(\Leftrightarrow\sqrt{x^4+4x^3+8x^2+8x+4}-4068290-\sqrt{x^4+2x^3+3x^2+2x+1}+4066273=0\)

\(\Leftrightarrow\left(\sqrt{x^4+4x^3+8x^2+8x+4}-4068290\right)-\left(\sqrt{x^4+2x^3+3x^2+2x+1}-4066273\right)=0\)

\(\Leftrightarrow\dfrac{x^4+4x^3+8x^2+8x+4-4068290^2}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{x^4+2x^3+3x^2+2x+1-4066273^2}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}=0\)

\(\Leftrightarrow\dfrac{x^4+4x^3+8x^2+8x-16550983524096}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{x^4+2x^3+3x^2+2x-16534576110528}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}=0\)

\(\Leftrightarrow\dfrac{\left(x-2016\right)\left(x+2018\right)\left(x^2+2x+4068292\right)}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{\left(x-2016\right)\left(x+2017\right)\left(x^2+x+4066274\right)}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}=0\)

\(\Leftrightarrow\left(x-2016\right)\left(\dfrac{\left(x+2018\right)\left(x^2+2x+4068292\right)}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{\left(x+2017\right)\left(x^2+x+4066274\right)}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}\right)=0\)

Dễ thấy: \(\dfrac{\left(x+2018\right)\left(x^2+2x+4068292\right)}{\sqrt{x^4+4x^3+8x^2+8x+4}+4068290}-\dfrac{\left(x+2017\right)\left(x^2+x+4066274\right)}{\sqrt{x^4+2x^3+3x^2+2x+1}+4066273}>0\)

Nên \(x-2016=0\Rightarrow x=2016\)

16 tháng 6 2017

Phương pháp dành cho thường dân. Chống chỉ định những người không phải thường dân xem.

\(\sqrt{\left(x^2+2x\right)^2+4\left(x+1\right)^2}-\sqrt{x^2+\left(x+1\right)^2+\left(x^2+x\right)^2}=2017\)

\(\Leftrightarrow\sqrt{\left(x^2+2x\right)^2+4x^2+8x+4}-\sqrt{\left(x^2+x\right)^2+2x^2+2x+1}=2017\)

\(\Leftrightarrow\sqrt{\left(x^2+2x\right)^2+4\left(x^2+2x\right)+4}-\sqrt{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}=2017\)

\(\Leftrightarrow\sqrt{\left(x^2+2x+2\right)^2}-\sqrt{\left(x^2+x+1\right)^2}=2017\)

\(\Leftrightarrow x^2+2x+2-x^2-x-1=2017\)

\(\Leftrightarrow x=2016\)

8 tháng 3 2017

1/ nhân 4 cả 2 vế lên, vế trái sẽ trở thành (2x+1)(2x+2)^2(2x+3), nhân 2x+1 với 2x+3, cái bình phương phân tích ra
thành (4x^2+8x+3)(4x^2+8x+4)=72
đặt 4x^2+8x+4=a \(\left(a\ge0\right)\)

thay vào ta có (a-1)a=72 rồi bạn phân tích thành nhân tử sẽ có nghiệm là 9 và -8 loại được -8 thì nghiệm của a là 9
suy ra 2x+1=3 hoặc -3, tính ra được x rồi nhân vào với nhau

2/\(\Leftrightarrow5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left[\left(x+1\right)+\left(x^2-x+1\right)\right]\)

đặt căn x+1=a, căn x^2-x+1=b (a,b>=0)
thay vào ra là \(2a^2-5ab+2b^2=0\\ \Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

suy ra a=2b hoặc b=2a, thay cái kia vào bình phương lên giải nốt phương trình rồi nhân nghiệm với nhau

10 tháng 3 2017

Nghiệm nguyên.

2x+3=(2x+1)+2

\(\left(1\right)\Leftrightarrow\left[\left(2x+1\right)\left(x+1\right)\right]^2+2\left(2x+1\right)\left(x+1\right)^2=18\\ \)

2x+1 luôn lẻ---> x+1 phải chẵn --> x phải lẻ---> x=2n-1

\(\left(4n+3\right)\left(2n\right)^2\left(4n+1\right)=18\)

18 không chia hết co 4 vậy vô nghiệm nguyên.

Viết diễn dải dài suy luận logic rất nhanh