cho (O,R) ,1 điểm A cố định nằm ngoài (O) .OA=2R,đường kính BC quay quanh O sao cho A,B,C ko thắng hàng . đường tròn ngoại tiếp tam giác ABC cắt OA tại điểm I , AB cắt (O) tại D , AC cắt (O) tại E.
DE cắt OA tại K
cmr a, OI.OA=OB.OC
AK.AI=AE.AC
b, tính OI, AK theo R
c ,cm đường tròn ngoại tiếp tam giác ADE luôn đi qua 1 điểm cố định khi BC quay quanh O
a) Dễ thấy tg AOB ~ tg COI => OA/OC = OB/OI => OA.OI = OB.OC = R^2 (1)
b)
Trong (O) : ^CED = ^CBD ( cùng chắn cung CD) hay ^CEK = ^CAB (2)
Trong (ABC) : ^CIA = ^CAB (cùng chắn cung CA) hay ^CIK = ^CAB (3)
Từ (2) và (3) => ^CEK = ^CIK => CEIK nội tiếp
Vì CEKI nội tiếp => AK.AI = AC.AE (4)
Mà trong (O) có cát tuyến ACE nên có hệ thức : AC.AE = OA^2 - R^2 = 4R^2 - R^2 = 3R^2 (5)
Mặt khác từ (1) => OI = R^2/OA = R^2/2R = R/2 => AI = OA + OI = 2R + R/2 = 5R/2 (6)
Từ (4) ; (5); (6) => AK = AC.AE/AI = 3R^2/(5R/2) = 6R/5
c) OA cắt (O) tại M, N (M nằm giữa A và K) =>
MK = AK - AM = 6R/5 - R = R/5
NK = AN - AK = 3R - 6R/5 = 9R/5
Vì EMDN nội tiếp (O) nên tương tự câu a) ta có : DK.EK = MK.NK = 9R^2/25 (7)
Mặt khác nếu trên đoạn OK lấy J sao cho JK = 3R/10 => J cố định và AK.JK = (6R/5).(3R/10) = 9R^2/25 (8)
Từ (7) và (8) => AK.JK = DK.EK => ADJE nội tiếp hay đường tròn ngoại tiếp tg ADE luôn đi qua AJ hay tâm của có luôn chạy trên đường thẳng trung trực của đoạn AJ cố định xác định như trên