Cho góc xOy và điểm M cố định thuộc miền trong của góc. Một đường thẳng thay đổi vị trí nhưng luôn đi qua M cắt các tia Ox và Oy theo thứ tự ở A, B. Gọi S1, S2 theo thứ tự là diện tích các tam giác MOA, MOB. Chứng minh rằng tổng \(\frac{1}{S_1}+\frac{1}{S_2}\)có giá trị không đổi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt AC = x; BD = y (x, y > 0)
Ta có \(\Delta ACM\sim\Delta BMD\left(g-g\right)\Rightarrow\frac{AC}{MB}=\frac{AM}{BD}\)
\(\Rightarrow AC.BD=AM.MB=const\Rightarrow xy=c=const\)
\(S_{MCD}=S_{ACDB}-S_{ACM}-S_{MBD}=\frac{\left(x+y\right)\left(AM+MB\right)}{2}-\frac{x.AM}{2}-\frac{y.MB}{2}\)
\(=\frac{x.MB+y.AM}{2}\ge\sqrt{xy.MB.AM}=\sqrt{c^2}=c\)
Dấu bằng xảy ra khi x.MB = y.AM, lại có \(xy=MB.AM\Rightarrow\hept{\begin{cases}x=AM\\y=MB\end{cases}}\)
Vậy giá trị nhỏ nhất của \(S_{CMD}=c\left(đvdt\right)\) xảy ra khi AC = AM; BD = BM.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Linhllinh - Toán lớp 9 - Học toán với OnlineMath
a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau
b, Do OI=NK, OK=IM => OM=ON
Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông
c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông
=> ∆BLC = ∆KOI
=> L B C ^ = O K I ^ = B I K ^
mà B I K ^ + I B A ^ = 90 0
L B C ^ + L B I ^ + I B A ^ = 180 0
d, Có OMCN là hình vuông cạnh a cố định
=> C cố định và AB luôn đi qua điểm C
Gọi \(\overrightarrow{u},\overrightarrow{v}\) theo thứ tự là vec tơ chỉ phương đơn vị của các tia Ox, Oy, tương ứng cùng hướng với các tia Ox, Oy gọi I là tâm của \(\omega\). Chọn O làm gốc vec tơ điểm và với mỗi điểm X của mặt phẳng, ký hiệu \(\overrightarrow{x}\) để chỉ vec tơ \(\overrightarrow{OX}\). Trung trực OA cắt các đường thẳng \(d_1,d_2\) theo thứ tự tại B, C.
Khi đó B, C cố định và do I nằm trên đường thẳng BC nên \(\overrightarrow{i}=\alpha\overrightarrow{b}+\left(1-\alpha\right)\overrightarrow{c}\)
Mặt khác , theo định lí chiếu ta có :
\(\overrightarrow{m}=2\left(\overrightarrow{i}.\overrightarrow{u}\right).\overrightarrow{u}\) và \(\overrightarrow{n}=2\left(\overrightarrow{i}.\overrightarrow{v}\right).\overrightarrow{v}\)
Gọi P là trung điểm MN. Suy ra \(2\overrightarrow{p}=\overrightarrow{m}.\overrightarrow{n}\). Bởi vậy, với \(b=OB,c=OC\) và \(t=\cos<\left(\overrightarrow{u}\overrightarrow{v}\right)\) thì b, c, t là các hằng số và :
\(\overrightarrow{p}=\left[\alpha.\overrightarrow{b}\overrightarrow{u}+\left(1-\alpha\right).\overrightarrow{c}.\overrightarrow{u}\right].\overrightarrow{u}+\left[\alpha.\overrightarrow{b}\overrightarrow{v}+\left(1-\alpha\right).\overrightarrow{c}.\overrightarrow{v}\right].\overrightarrow{v}\)
\(=\alpha.b\left(\overrightarrow{u}+t\overrightarrow{v}\right)+\left(1-\alpha\right).c\left(t\overrightarrow{u}+\overrightarrow{v}\right)\)
\(=\alpha\overrightarrow{x}+\left(1-\alpha\right)\overrightarrow{y}\)
Trong đó \(\overrightarrow{x}=\overrightarrow{OX}=b\left(\overrightarrow{u}+t\overrightarrow{v}\right)\) và \(\overrightarrow{y}=\overrightarrow{OY}=c\left(t\overrightarrow{u}+\overrightarrow{v}\right)\) là các vec tơ cố định
Suy ra P luôn nằm trên đường thẳng XY cố định khi \(\omega\) thay đổi
Bài 1:
Gọi E là giao điểm của phân giác AD với MN.
Qua E, kẻ đoạn thẳng IJ vuông góc với AD \(\left(I\in AB,J\in AC\right)\)
Gọi H là điểm đối xứng với M qua AD.
Ta thấy rằng \(\widehat{MEI}=\widehat{HEJ}\Rightarrow\widehat{HEJ}=\widehat{JEN}\) hay EJ là phân giác trong góc NEH.
Do \(EJ\perp EA\) nên EA là phân giác ngoài tại đỉnh E của tam giác NEH.
Theo tính chất tia phân giác trong và ngoài của tam giác, ta có:
\(\frac{NJ}{HJ}=\frac{EN}{EH}=\frac{AN}{AH}\Rightarrow\frac{\overline{NJ}}{\overline{NA}}:\frac{\overline{HJ}}{\overline{HA}}=-1\Rightarrow\left(AJNH\right)=-1\)
Áp dụng hệ thức Descartes, ta có \(\frac{2}{AJ}=\frac{1}{AH}+\frac{1}{AN}=\frac{1}{AM}+\frac{1}{AN}=\frac{3}{a}\)
\(\Rightarrow AJ=\frac{2a}{3}\)
Vậy J cố định, mà AD cố định nên IJ cũng cố định. Vậy thì E cũng cố định.
\(AJ=\frac{2a}{3}\Rightarrow AE=\frac{2.AD}{3}\) hay E là trọng tâm tam giác ABC.
Tóm lại MN luôn đi qua trọng tâm tam giác ABC.
giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Linhllinh - Toán lớp 9 - Học toán với OnlineMath
Do Ax⊥ABAx⊥AB
By⊥ABBy⊥AB
⇒Ax∥By⇒Ax∥By
(Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì chúng song song với nhau)
b) Xét ΔOACΔOAC và ΔOBKΔOBK có:
ˆOAC=ˆOBK=90oOAC^=OBK^=90o
OA=OBOA=OB (do O là trung điểm của AB)
ˆAOC=ˆBOKAOC^=BOK^ (đối đỉnh) và BK=ACBK=AC
⇒ΔOAC=ΔOBK⇒ΔOAC=ΔOBK (g.c.g)
⇒OC=OK⇒OC=OK (hai cạnh tương ứng)
Ta có OD⊥⊥CK và OD đi qua O là trung điểm của CK nên ODOD là đường trung trực của CKCK (đường trung trực của một đoạn thẳng là đường vuông góc với đoạn thẳng tại trung điểm của đoạn thẳng đó)
c) Do OD là đường trung trực của đoạn CK nên DC=DKDC=DK (tính chất)
Mà DK=DB+BK=DB+ACDK=DB+BK=DB+AC
⇒CD=DB+AC⇒CD=DB+AC (đpcm)