K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2017

f(x)=ax^2+bx+c (1)

đề Khó hiểu: a.f(x)=a^2x^2+abx+ac<0 (2) phải cho x khoảng nào hay là đúng với mọi x: đúng với mọi x không phải rồi vì khi x lớn (2) lớn=> không thể <0 được

NV
31 tháng 5 2020

Với \(m>0\)

\(2mx=\left(m-1\right)x+m\)

\(\Leftrightarrow2mx-\left(m-1\right)x=m\)

\(\Leftrightarrow\left(m+1\right)x=m\)

\(\Leftrightarrow x=\frac{m}{m+1}\)

Ta có: \(0< m< m+1\Rightarrow\frac{m}{m+1}< 1\)

\(\left\{{}\begin{matrix}m>0\\m+1>0\end{matrix}\right.\) \(\Rightarrow\frac{m}{m+1}>0\)

\(\Rightarrow0< \frac{m}{m+1}< 1\)

Do đó pt có nghiệm duy nhất thỏa mãn \(0< x< 1\)

17 tháng 3 2019

Câu 3b

Phương trình chứa ẩn ở mẫu

17 tháng 3 2019

Bài 2:

Đặt \(2017-x=a;2019-x=b;2x-4036=c\)

\(\Rightarrow a+b+c=0\)

Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)

Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)

Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)

\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)

23 tháng 4 2018

\(A=\left[\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right]\left[\dfrac{x^2-2x+1}{2}\right]\)

\(A=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}\right]\) \(\left[\dfrac{\left(x-1\right)^2}{2}\right]\)

\(A=\left[\dfrac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)-\left(x\sqrt{x}-\sqrt{x}+2x-2\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}\right]\) \(\dfrac{\left(x-1\right)^2}{2}\)

\(A=\left[\dfrac{x\sqrt{x}+2x+\sqrt{x}-2x-4\sqrt{x}-2-x\sqrt{x}+\sqrt{x}-2x+2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}\right]\)

\(A=\dfrac{\left(x-1\right)\left(x-1\right)}{2}\)

\(A=\dfrac{-2x-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(x-1\right)\left(x-1\right)}{2}\)

\(A=\dfrac{-2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2}.\dfrac{x-1}{2}\)

\(A=-\sqrt{x}\left(\sqrt{x}-1\right)\)

23 tháng 4 2018

\(A>0\Leftrightarrow-\sqrt{x}\left(\sqrt{x}-1\right)>0\)

\(\Leftrightarrow\sqrt{x}-1< 0\)\(-\sqrt{x}< 0\) \(\forall x>0\)

\(\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)

kết hợp với \(ĐKXĐ:x>0;x\ne1\) ta có \(0< x< 1\) ( luôn đúng )