K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

TL

Đáp án:

Giải thích các bước giải:a. ta có: N là trung điểm của AC

a. M là trung điểm của BC

=> MN là đường TB của ∆CAB

=> MN // AB => ME//AB

c. AE // BM

AB//EM

=> AEMB là hình bình hành

=> AE=BM=> AE=MC

HT

13 tháng 10 2021
 

Lai hộ cái

a) ΔABC cân tại A mà AM là đường cao BC

→AM là trung tuyến BC (tính chất các đường đồng quy Δ cân)

→M là trung điểm BC

mà N là trung điểm AC

→MN là đường trung bình ΔABC

→MN//AB hay ME//AB

b) Ax//BC

→AE//CM

→A1^=C1^ (so le trong)

Xét ΔANE và ΔCNM:

A1^=C1^(cmt)

AN=CN (N là trung điểm AC)

ANE^=CNM^ (đối đỉnh)

→ΔANE=ΔCNM(g−c−g)

→AE=MC (2 cạnh tương ứng)

c) AM là đường cao BC

→AM⊥BC mà Ax//BC

→Ax⊥AM

image 

a: Xét ΔAMN có

Ax vừa là đường cao, vừa là phân giác

=>ΔAMN cân tại A

b: BE//AC

=>góc BEM=góc ANE

=>góc BEM=góc BME

=>BE=BM

Xét ΔDEB và ΔDNC có

góc DBE=góc DCN

DB=DC

góc BDE=góc NDC

=>ΔDEB=ΔDNC

=>BE=NC

=>BE=CN

18 tháng 7 2019
https://i.imgur.com/emLdR7B.jpg
28 tháng 12 2018

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD

31 tháng 5 2019

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>BF=CE=BD