K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

giả sử số chính phương lẻ là a2

<=> a có 2 dạng là {4k+1;4k+3}

+xét a=4k+1

=>a2=(4k+1)2=16k2+8k+1=4x(4k2+2k)+1 chia  cho 4 dư1    (1)

+xét a=4k+3

=>a2=(4k+3)2=16K2+24k+8+1=4x(4k2+6k+2)+1  chia cho 4 dư1    ( 2)

từ (1)và(2) suy ra điều phải chứng minh

17 tháng 10 2019

Gọi số chính phương đó là \(\left(2n+1\right)^2\)

Ta có: \(\left(2n+1\right)^2=4n^2+4n+1\)

\(=4n\left(n+1\right)+1\)(chia 4 sư 1)

2 tháng 8 2016

gọi số chính phương là \(a^3\)sau đó phân tích là ra mà

2 tháng 8 2016

giải rõ ràng ra hộ vs ạ

17 tháng 10 2015

đây nè

5 tháng 3 2018

a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1

Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.

Vậy n chia 8 dư 1.

b) Em tham khảo tại link dưới đây nhé.

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

3 tháng 9 2019

a

Gọi số chính phương đó là \(a^2\).Do a là số nguyên nên a có dạng \(3k+1;3k+2;3k\)

Với \(a=3k\) thì \(a^2=9k^2⋮3\)

Với \(a=3k+1\) thì \(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1

Với \(a=3k+2\) thì \(a^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1

Vậy số chính phương chia 3 dư 0 hoặc 1

Gọi số chính phương  đó là \(b^2\).Do b là số nguyên nên b có các dạng \(4k;4k+1;4k+2;4k+3\)

Tương tự xét như câu a nha.Ngại viết.

5 tháng 8 2017

a) Số lẻ c ó dạng \(2k+1\left(k\in N\right)\)

Bình phương của số lẻ là :

\(\left(2k+1\right)^2=4k^2+4k+1\)

\(4k^2+4k⋮4\)

\(\Leftrightarrow4k^2+4k+1\) chia 4 dư 1

\(\Leftrightarrow\) Bình phương của 1 số lẻ chia 4 dư 1

24 tháng 7 2019

Chứng minh rằng:

a) Bình phương của một số lẻ chia cho 4 dư 1

Bình phương của một số lẻ có dạng là (2k+1)^2

Ta có:

(2k+1)^2=4k^2+4k+1

Mà 4k^2+4k chia hết cho 4 nên 4k^2+4k+1 chia 4 dư 1.

Hay (2k+1) chia 4 dư 1

b) Bình phương của một số lẻ chia cho 8 dư 1

Bình phương của một số lẻ có dạng là (2k+1)^2

Ta có: (2k+1)^2=4k^2+4k+1

Ta lại có: 4k^2+4k chia hết cho 4

4k^2+4k chia hết cho 2

Suy ra 4k^2+4k chia hết cho 8

vậy 4k^2+4k+1 chia 8 dư 1

hay (2k+1)^2 chia 8 dư 1

15 tháng 10 2018

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề