K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2019

a) \(A=\frac{5}{\sqrt{x}+1}\)

A nguyên\(\Leftrightarrow\frac{5}{\sqrt{x}+1}\)nguyên\(\Leftrightarrow5⋮\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Mà \(\sqrt{x}+1\ge1\)nên \(\sqrt{x}+1\in\left\{1;5\right\}\)

\(TH1:\sqrt{x}+1=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

\(TH2:\sqrt{x}+1=5\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)

b) \(B=\frac{7}{\sqrt{x}-3}\)

A nguyên \(\Leftrightarrow\frac{7}{\sqrt{x}-3}\)nguyên\(\Leftrightarrow7⋮\left(\sqrt{x}-3\right)\)

\(\Leftrightarrow\sqrt{x}-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Tương tự câu a
17 tháng 10 2019

c) \(C=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)

\(=1+\frac{4}{\sqrt{x}-3}\)

C nguyên\(\Leftrightarrow\frac{4}{\sqrt{x}-3}\in Z\Leftrightarrow4⋮\sqrt{x}-3\)

Tương tự hai câu a,b

d) \(D=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{\sqrt{x}-1+3}{\sqrt{x}-1}\)

\(=1+\frac{3}{\sqrt{x}-1}\)

D nguyên\(\Leftrightarrow\frac{3}{\sqrt{x}-1}\)nguyên

Tương tự

24 tháng 12 2023

a: ĐKXĐ: x>0

Để A là số nguyên thì \(7⋮\sqrt{x}\)

=>\(\sqrt{x}\in\left\{1;7\right\}\)

=>\(x\in\left\{1;49\right\}\)

b: ĐKXĐ: x>1

Để B là số nguyên thì \(3⋮\sqrt{x-1}\)

=>\(\sqrt{x-1}\in\left\{1;3\right\}\)

=>\(x-1\in\left\{1;9\right\}\)

=>\(x\in\left\{2;10\right\}\)

c: ĐKXĐ: x>3

Để C là số nguyên thì \(2⋮\sqrt{x-3}\)

=>\(\sqrt{x-3}\in\left\{1;2\right\}\)

=>\(x-3\in\left\{1;4\right\}\)

=>\(x\in\left\{4;7\right\}\)

22 tháng 12 2021

c: Để C nguyên thì \(x^2-3\in\left\{-1;1;5\right\}\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

22 tháng 12 2021

\(b,B=\dfrac{2x-1}{x-1}=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\)

Do \(2\in Z\Rightarrow\)\(\dfrac{1}{x-1}\in Z\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(x-1\)\(1\)\(-1\)
\(x\)\(2\)\(0\)

 

14 tháng 12 2022

`a)A` nguyên `<=>x+2 in Ư_5`

  Mà `Ư_5 ={+-1;+-5}`

`@x+2=1=>x=-1`

`@x+2=-1=>x=-3`

`@x+2=5=>x=3`

`@x+2=-5=>x=-7`

______________________________________________

`b)B=[x-5]/x=1-5/x`

 `B` nguyên `<=>x in Ư_{5}`

   Mà `Ư_{5}={+-1;+-5}`

 `=>x in {+-1;+-5}`

______________________________________________

`c)C=[x-2]/[x+1]=[x+1-3]/[x+1]=1-3/[x+1]`

   `C` nguyên `<=>x+1 in Ư_3`

  Mà `Ư_3={+-1;+-3}`

`@x+1=1=>x=0`

`@x+1=-1=>x=-2`

`@x+1=3=>x=2`

`@x+1=-3=>x=-4`

______________________________________________

`d)D=[2x-7]/[x+1]=[2x+2-9]/[x+1]=2-9/[x+1]`

  `D` nguyên `<=>x+1 in Ư_9`

 Mà `Ư_9 ={+-1;+-3;+-9}`

`@x+1=1=>x=0`

`@x+1=-1=>x=-2`

`@x+1=3=>x=2`

`@x+1=-3=>x=-4`

`@x+1=9=>x=8`

`@x+1=-9=>x=-10`

23 tháng 12 2022

cách này có phải lập bảng ko bạn

 

 

6 tháng 1 2021

ok how are you

28 tháng 3 2020

a) \(\left(\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x^2-5x+6}\right):\left(\frac{1-x}{x+1}\right)\)

\(\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{x^2-2x-3x+6}\right):\left(\frac{1-x}{x+1}\right)\)

\(\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right):\left(\frac{1-x}{x+1}\right)\)

\(\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right).\frac{x+1}{1-x}\)

=\(\frac{-3+x}{\left(x-2\right)\left(x-3\right)}.\frac{x+1}{1-x}\)

=\(\frac{1}{\left(x-2\right)}.\frac{x+1}{1-x}\)

=\(\frac{x+1}{\left(x-2\right)\left(1-x\right)}\)

b) Để A >1 \(\Leftrightarrow\frac{x+1}{\left(x-2\right)\left(1-x\right)}>1\)

\(\Leftrightarrow\frac{-\left(1-x\right)\left(3-x\right)}{\left(x-2\right)\left(1-x\right)}\)

\(\Leftrightarrow\frac{x-3}{x-2}>0\)

\(\Rightarrow\orbr{\begin{cases}x-3\ge0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge3\\x>2\end{cases}\Leftrightarrow}x\ge3}\)

\(\Rightarrow\orbr{\begin{cases}x-3< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 2\end{cases}\Leftrightarrow}x< 2}\)

Vậy ...

7 tháng 8 2020

\(A=\frac{3}{x-1}\)

=> x - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}

x -11-13-3
x204-2

b) \(B=\frac{x+2}{x+1}=\frac{x+1+1}{x+1}=1+\frac{1}{x+1}\)

=> x + 1 \(\in\)Ư(1) = { \(\pm\)1}

=> x = 0 hoặc x = -2

c) \(C=\frac{5}{2x+7}\)

=> 2x + 7 \(\in\)Ư(5) = { \(\pm1;\pm5\)}

=> 2x \(\in\){-6 ; -8 ; -2 ; -12}

=> x \(\in\){ -3; -4 ; -1; -6}

d) \(D=\frac{11x-8}{x+2}=\frac{11\left(x+2\right)-30}{x+2}=11-\frac{30}{x+2}\)

=> 30 \(⋮\)x + 2 => x + 2 thuộc Ư(30)

Tự xét

7 tháng 8 2020

Bg

a) Ta có: A = \(\frac{3}{x-1}\)    (x thuộc Z)

Để A nguyên thì 3 \(⋮\)x - 1

=> x - 1 thuộc Ư(3)

Ư(3) = {1; -1; 3; -3}

=> x - 1 = 1 hay -1 hay 3 hay -3

=> x = 1 + 1 hay -1 + 1 hay 3 + 1 hay -3 + 1

=> x = {2; 0; 4; -2}

b) Ta có: B = \(\frac{x+2}{x+1}\)   (x thuộc Z)

Để B nguyên thì x + 2 \(⋮\)x + 1

=> x + 2 - (x + 1) \(⋮\)x + 1

=> x + 2 - x - 1 \(⋮\)x + 1

=> x - x + (2 - 1) \(⋮\)x + 1

=> 1 \(⋮\)x + 1

=> x + 1 thuộc Ư(1)

Ư(1) = {1; -1}

=> x + 1 = 1 hay -1

=> x = 1 - 1 hay -1 - 1

=> x = {0; -2}

c) Ta có: C = \(\frac{5}{2x+7}\)    (x thuộc Z)

Để C nguyên thì 5 \(⋮\)2x + 7

=> 2x + 7 thuộc Ư(5)

Ư(5) = {1; - 1; 5; -5}

=> 2x + 7 = 1 hay -1 hay 5 hay -5

......... (Tự làm)

=> x = {-3; -4; -1; -6}

d) Ta có: D = \(\frac{11x-8}{x+2}\)  (x thuộc Z)

Để D nguyên thì 11x - 8 \(⋮\)x + 2

=> 11x - 8 - [11(x + 2)] \(⋮\)x + 2

=> 11x - 8 - 11x - 11.2 \(⋮\)x + 2

=> 11x - 11x - (22 + 8) \(⋮\)x + 2

=> 30 \(⋮\)x + 2

=> x + 2 thuộc Ư(30)

Ư(30) = {...}

.... (Tự làm)

=> x = {…}

28 tháng 3 2021

a) ta thấy (x-1)^2 >/=0

->(x-1)^2 +2008>/= 0

dấu = xảy ra khi và chỉ khi (x-1)^2= 0

<=> x=1

 vậy A có giá trị bằng 2008 khi và chỉ khi x=1

b) Ta có: \(\left|x+4\right|\ge0\forall x\)

\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)

Dấu '=' xảy ra khi x+4=0

hay x=-4

Vậy: Giá trị nhỏ nhất của biểu thức B=|x+4|+1996 là 1996 khi x=-4