Xét tính chẵn lẻ của hàm số: x5+x4-x3+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tập xác định D = R\{0} nên nếu x ≠ 0 và x ∈ D thì -x ∈ D
Vậy hàm số đã cho là hàm số lẻ.
Tập xác định D = R, nhưng f(1) = -1 + 3 - 2 = 0 còn f(-11) = -1 - 3 - 2 = -6 nên f(-1) ≠ f(1) và f(-1) ≠ -f(1)
Vậy hàm số đã cho không là hàm số chẵn cũng không là hàm số lẻ.
TXĐ: D=R
\(y\left(-x\right)=\left(-x\right)^3-5\left(-x\right)=-x^3+5x=-\left(x^3-5x\right)=-y\left(x\right)\)
\(\Rightarrow\) Hàm lẻ
Đặt y = f(x) = x3 + x.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x)3 + (–x) = –x3 – x = – (x3 + x) = –f(x)
Vậy y = x3 + x là một hàm số lẻ.
TXĐ: D=R
Khi \(x\in D\Rightarrow-x\in D\)
\(f\left(-x\right)=\left(-x\right)^4-3\cdot\left(-x\right)^2+1\)
\(=x^4-3x^2+1\)
=f(x)
=> f(x) là hàm số chẵn
Xét tích . Giả sử và chẵn, lẻ. Ta có:
Vì chẵn, lẻ nên ở tử và mẫu đều có một số chẵn thừa số, chia đều thành tích các cặp liên tiếp. Theo đề bài thì hai đại lượng liên tiếp tỉ lệ nghịch với nhau nên tích của chúng không đổi.
Các tích trên tử và mẫu đều không đổi Tích không đổi
và tỉ lệ nghịch với nhau.
Vậy đại lượng mang chỉ số chẵn luôn tỉ lệ nghịch với đại lượng mang chỉ số lẻ.
Xét tích . Giả sử và chẵn, lẻ. Ta có:
Vì chẵn, lẻ nên ở tử và mẫu đều có một số chẵn thừa số, chia đều thành tích các cặp liên tiếp. Theo đề bài thì hai đại lượng liên tiếp tỉ lệ nghịch với nhau nên tích của chúng không đổi.
Các tích trên tử và mẫu đều không đổi Tích không đổi
và tỉ lệ nghịch với nhau.
Vậy đại lượng mang chỉ số chẵn luôn tỉ lệ nghịch với đại lượng mang chỉ số lẻ.
\(f\left(x\right)=x^5+x^4-x^3+1\)
\(f\left(-x\right)=-x^5+x^4+x^3+1\)
Hàm ko chẵn ko lẻ