K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

a: E đối xứng A qua H

=>H là trung điểm của AE

Ta có: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

Xét tứ giác ACED có

H là trung điểm chung của AE và CD

=>ACED là hình bình hành

Hình bình hành ACED có AE\(\perp\)CD

nên ACED là hình thoi

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB

Ta có: AC\(\perp\)CB

DE//AC(ACED là hình thoi)

Do đó: DE\(\perp\)BC tại I

=>ΔEIB vuông tại I

=>I nằm trên đường tròn tâm O', đường kính EB

Ta có: OO'+O'B=OB

=>O'O=OB-O'B=R1-R2

=>(O) và (O') tiếp xúc trong với nhau tại B

c: ΔDIC vuông tại I

mà IH là đường trung tuyến

nên HI=HD

=>ΔHID cân tại H

=>\(\widehat{HID}=\widehat{HDI}=90^0-\widehat{DCB}\)

Ta có: O'E=O'I

=>ΔO'EI cân tại O'

=>\(\widehat{O'IE}=\widehat{O'EI}\)

mà \(\widehat{O'EI}=\widehat{HED}\)(hai góc đối đỉnh)

và \(\widehat{HED}=\widehat{DCB}\)(=90 độ-CDE)

nên \(\widehat{O'IE}=\widehat{DCB}\)

Ta có: \(\widehat{HIO'}=\widehat{HIE}+\widehat{O'IE}\)

\(=90^0-\widehat{DCB}+\widehat{DCB}=90^0\)

=>HI là tiếp tuyến của (O')

a) Xét (O) có

OA là một phần đường kính

CD là dây(gt)

OA⊥CD tại H(gt)

Do đó: H là trung điểm của CD(Định lí đường kính vuông góc với dây)

Xét tứ giác OCAD có 

H là trung điểm của đường chéo CD(cmt)

H là trung điểm của đường chéo OA(gt)

Do đó: OCAD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành OCAD có OC=OD(=R)

nên OCAD là hình thoi(Dấu hiệu nhận biết hình thoi)

b) Ta có: OCAD là hình thoi(cmt)

nên OC=CA=AD=OD(Các cạnh trong hình thoi OCAD)

Ta có: OC=OA(=R)

mà OC=CA(cmt)

nên OC=CA=OA

Xét ΔOCA có OC=CA=OA(cmt)

nên ΔOCA đều(Dấu hiệu nhận biết tam giác đều)

\(\widehat{COA}=60^0\)(Số đo của một góc trong ΔOCA đều)

Ta có: OCAD là hình thoi(cmt)

nên OA là tia phân giác của \(\widehat{COD}\)(Tính chất hình thoi)

\(\Rightarrow\widehat{COD}=2\cdot\widehat{COA}\)

hay \(\widehat{COD}=120^0\)

Vậy: \(\widehat{COD}=120^0\)

 

20 tháng 1 2021

Làm luôn phần c :)

c, Vì ACOD là hình thoi (cmb)

\(\Rightarrow\) OC // AD (tính chất hình thoi)

Mà E \(\in\) OC (CE là đường kính của đường tròn tâm O)

\(\Rightarrow\) CE // AD 

Xét tứ giác ACED có: CE // AD (cmt)

\(\Rightarrow\) ACED là hình thang (dhnb hình thang)

Ta có: SACD = \(\dfrac{1}{2}\)AH.CD (1)

SDCE = \(\dfrac{1}{2}\)CD.DE (Vì tam giác DCE là tam giác vuông (cm được theo tứ giác nội tiếp) (2)

Từ (1) và (2) \(\Rightarrow\) SACED = SACD + SDCE = \(\dfrac{1}{2}\)AH.CD + \(\dfrac{1}{2}\)CD.DE = \(\dfrac{1}{2}\)CD.(AH + DE) (3)

Xét tam giác CED có: O là trung điểm của CE (gt)

H là trung điểm của CD (cma)

\(\Rightarrow\) OH là đường trung bình của tam giác CED (đ/n)

\(\Rightarrow\) OH = \(\dfrac{1}{2}\)DE

hay 2OH = DE

lại có AH = OH (H là trung điểm của OA theo gt)

\(\Rightarrow\) 2AH = DE (4)

Từ (3) và (4) 

\(\Rightarrow\) SACED = \(\dfrac{1}{2}\)CD(AH + 2AH) = \(\dfrac{1}{2}\)CD.3AH = AH.SACD

Chúc bn học tốt! (Ko bt phần tính S kia cần gì thêm nx ko?)

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái