rút gọn bt:
\(\frac{\sqrt{2}-\sqrt{6}}{1-\sqrt{3}}-\frac{3+\sqrt{27}}{1+\sqrt{3}}\)
Giải pt:
x=\(\frac{1}{\sqrt{2019}-\sqrt{2018}}\)và y=\(\frac{1}{\sqrt{2018}-\sqrt{2017}}\)
b,So sánh
(giúp mk vs huhu...)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{3}+\sqrt{4}\right)\left(\sqrt{4}-\sqrt{3}\right)}+...+\frac{\sqrt{2018}-\sqrt{2017}}{\left(\sqrt{2017}+\sqrt{2018}\right)\left(\sqrt{2018}-\sqrt{2017}\right)}\)
\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{2018}-\sqrt{2017}}{2018-2017}\)
\(=\frac{\sqrt{2}-1}{1}+\frac{\sqrt{3}-\sqrt{2}}{1}+\frac{\sqrt{4}-\sqrt{3}}{1}+...+\frac{\sqrt{2018}-\sqrt{2017}}{1}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2018}-\sqrt{2017}=\sqrt{2018}-1\)
\(=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2017}+\sqrt{2018}}\)
\(=-\sqrt{1}+\sqrt{2}-\sqrt{2}+\sqrt{3}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2018}\)
\(=-\left(\sqrt{1}+\sqrt{2018}\right)\)
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.........+\frac{1}{\sqrt{2017}+\sqrt{2018}}\)
\(=\frac{2-1}{\sqrt{1}+\sqrt{2}}+\frac{3-2}{\sqrt{2}+\sqrt{3}}+........+\frac{2018-2017}{\sqrt{2017}+\sqrt{2018}}\)
\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{1}+\sqrt{2}}+\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}}+......+\)
\(\frac{\left(\sqrt{2018}-\sqrt{2017}\right)\left(\sqrt{2018}+\sqrt{2017}\right)}{\sqrt{2017}+\sqrt{2018}}\)
\(=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+........+\left(\sqrt{2018}-\sqrt{2017}\right)\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+......+\sqrt{2018}-\sqrt{2017}\)
\(=-\sqrt{1}+\sqrt{2018}=\sqrt{2018}-\sqrt{1}\)
a, x=\(\frac{1\left(\sqrt{2019}+\sqrt{2018}\right)}{2019-2018}\) và y=\(\frac{1\left(\sqrt{2018}+\sqrt{2017}\right)}{2018-2017}\) (Trục căn thức ở mẫu)
\(\Leftrightarrow\) x=\(\sqrt{2019}+\sqrt{2018}\) và y=\(\sqrt{2018}+\sqrt{2017}\)
b, Ta có : x - y = (\(\sqrt{2019}+\sqrt{2018}\) ) - ( \(\sqrt{2018}+\sqrt{2017}\) )
= \(\sqrt{2019}-\sqrt{2017}\) > 0
\(\Rightarrow\) x - y > 0 \(\Leftrightarrow\) x > y
a/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)
\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)
\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)
\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)
b/ ĐKXĐ: ....
Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)
\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)
\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)
a/ ĐK: \(x\ge0\)
\(\Leftrightarrow\sqrt{3+x}=x^2-3\)
Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:
\(a=x^2-\left(a^2-x\right)\)
\(\Leftrightarrow x^2-a^2+x-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)
\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))
\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)
d/ ĐKXĐ: ...
\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)
\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)
\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))
a, \(\frac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\)-\(\frac{3\left(1+\sqrt{3}\right)}{1+\sqrt{3}}\)
=\(\sqrt{2}-3\)
b,X=\(\sqrt{2019}+\sqrt{2018}\)
(Khử mẫu,nhân tử&mẫu vs\(\sqrt{2019}+\sqrt{2018}\))
Y=\(\sqrt{2018}+\sqrt{2017}\)
(Khử mẫu,nhân tử&mẫu vs\(\sqrt{2018}+\sqrt{2017}\))
So sánh:X & Y<=>X-\(\sqrt{2018}\)&Y-\(\sqrt{2018}\)(Trừ hai vế cho \(\sqrt{2018}\)) <=>\(\sqrt{2019}\)&\(\sqrt{2017}\)
Có:2019>2017
=>\(\sqrt{2019}>\sqrt{2017}\)
=>X>Y
Câu b, mk ko bt có lm đúng ko?