K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2019

spam à xóa nhé

19 tháng 11 2019

What grade are you?

19 tháng 11 2019

Sai rồi còn bày đặt Tiếng Anh .Lần sau không biết thì im đi không lại bị người ta nói cho 

What grade are you in ? Okay

26 tháng 4 2016

giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp 

nên 2b+c-2c-a = 2b-a-c chia hết cho 3

lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3

tương tự ta có c-a và a-b chia hết cho 3

cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81

NV
10 tháng 12 2021

a.

\(\Leftrightarrow8x^3+8x=8y^2\)

\(\Leftrightarrow x\left(x^2+1\right)=y^2\)

Gọi \(d=ƯC\left(x;x^2+1\right)\)

\(\Rightarrow x^2+1-x.x⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow x\) và \(x^2+1\) nguyên tố cùng nhau

\(\Rightarrow\left\{{}\begin{matrix}x=m^2\\x^2+1=n^2\end{matrix}\right.\)

\(x^2+1=n^2\Rightarrow\left(n-x\right)\left(n+x\right)=1\)

\(\Rightarrow x=0\)

\(\Rightarrow y=0\)

NV
10 tháng 12 2021

TH1: a;b;c đồng dư khi chia 3 \(\Rightarrow a+b+c⋮3\)

TH2: 3 số a;b;c có số dư đôi một khác nhau khi chia cho 3 \(\Rightarrow a+b+c⋮3\)

TH3: 3 số a;b;c có 2 số đồng dư khi chia 3, một số khác số dư. Không mất tính tổng quát, giả sử \(a,b\) đồng dư khi chia 3 còn c khác số dư

\(\Rightarrow\left(a-b\right)^2⋮3\) còn \(\left(a-c\right)^2+\left(b-c\right)^2\) chia 3 luôn dư 1 hoặc 2

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2⋮̸3\)  (1)

Mặt khác từ giả thiết:

\(\left\{{}\begin{matrix}b^2-ac+3ac⋮3\\c^2-ab-3ab⋮3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b^2-ac⋮3\\c^2-ab⋮3\end{matrix}\right.\)

\(\Rightarrow2\left(a^2-bc\right)+2\left(b^2-ac\right)+2\left(c^2-ab\right)⋮3\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2⋮3\) trái với (1) ktm

Vậy \(a+b+c⋮3\)

NV
15 tháng 3 2022

Đề bài bị sai, ví dụ với \(\left(a;b;c\right)=\left(1;2;3\right)\) thì \(\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\) chia hết cho 5 nhưng \(\left(a-b\right)\left(b-c\right)\left(c-a\right)\) ko chia hết cho 5

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

NV
16 tháng 3 2022

Do 5 là số nguyên tố, nên trong 3 nhân tử \(a^3+b^3;b^3+c^3;c^3+a^3\) phải có ít nhất 1 số chia hết cho 5

Không mất tính tổng quát, giả sử \(a^3+b^3⋮5\) \(\Rightarrow a;b\) đều chia hết cho 5 hoặc đều ko chia hết cho 5

Nếu  \(a+b\) ko chia hết cho 5:

- a;b đồng dư khi chia 5 \(\Rightarrow\) \(a^3+b^3\) chia 5 dư lần lượt là 2;3;3;2\(\Rightarrow\) ko chia hết cho 5 (ktm)

- a;b khác số dư khi chia 5, do vai trò của a;b là như nhau và a+b ko chia hết cho 5 nên ta có các trường hợp sau:

+ a chia 5 dư 1: nếu b chia 5 dư 2 \(\Rightarrow A\) chia 5 dư -2 (ktm), nếu b chia 5 dư 3 \(\Rightarrow A\) chia 5 dư -3 (ktm)

+ a chia 5 dư 2, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 2 (ktm)

+ a chia 5 dư 3, b chia 5 dư 4 \(\Rightarrow A\) chia 5 dư 3 (ktm)

\(\Rightarrow a+b\) ko chia hết cho 5 thì \(a^2+b^2-ab\) cũng ko chia hết cho 5

\(\Rightarrow a^3+b^3\) ko chia hết cho 5 (mâu thuẫn giả thiết)

Vậy \(a+b⋮5\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)⋮5\)

NV
16 tháng 3 2022

\(A=a^2+b^2-ab\) , ko hiểu sao lại ghi thiếu

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D