cho tam giác ABC cân tại a,gọi E và F lần lượt là trung điểm của AB và AC.
a)cmr: tứ giác BEFC là hình thàn cân
b)gọi Mvà N lần lượt là trung điểm cua BE và CF.tính độ dài MN biết BC=8cm
c)gọi P vad Q lần lượt là giao điểm của MN với BF và CE cmr MQ=NP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình của ΔBAC
Suy ra: EF//BC và \(FE=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
a. Vì M,N là trung điểm AB,AC nen MN là đtb tg ABC
Do đó \(MN=\dfrac{1}{2}BC=3\left(cm\right)\)
b. Vì MN là đtb nên MN//BC hay BMNC là hình thang
Mà \(\widehat{B}=\widehat{C}\left(\Delta ABC\text{ cân tại A}\right)\) nên BMNC là ht cân
c. Vì AH là trung tuyến của tam giác ABC cân nên cũng là đg cao
Do đó \(AH\bot BC\)
Mà Q,M là trung điểm BH và AB nên QM là đtb
Do đó \(QM//AH;QM=\dfrac{1}{2}AH\) hay \(QM//HP\)
Mà \(MN//BC\) nên \(MP//QH\)
Do đó QMPH là hbh
Mà \(AH\bot BC\) nên \(\widehat{PHQ}=90^0\)
Vậy QMPH là hcn
a: Xét ΔABC có
D là trung điểm của BC
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: DF//AB
hay ABDF là hình thang
a: Xét hình thang BDEC có
M là trung điểm của BD
N là trung điểm của EC
Do đó: MN là đường trung bình của hình thang BDEC
Suy ra: \(MN=\dfrac{DE+BC}{2}=\dfrac{8+4}{2}=6\left(cm\right)\)
a, Vì E,F là trung điểm AB,AC nên EF là đtb tg ABC
Do đó \(EF=\dfrac{1}{2}BC=5\left(cm\right)\)
b, Vì EF là đtb nên EF//BC hay BEFC là hình thang
Mà \(\Delta ABC\) cân tại A nên \(\widehat{B}=\widehat{C}\)
Do đó BEFC là hình thang cân
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình của ΔBAC
Suy ra: EF//BC
hay BEFC là hình thang