K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

cái này là bổ đề tui c/m rùi mà =="

13 tháng 3 2020

Sửa đề: n \(\ge1\).

Với n =1, bất đẳng thức trở thành đẳng thức.

Với n =2, cần chứng minh: \(2\left(a_1^2+a_2^2\right)\ge\left(a_1+a_2\right)^2\Leftrightarrow\left(a_1-a_2\right)^2\ge0\) (đúng)

Giả sử nó đúng đến n = k, tức là ta có: \(k\left(a_1^2+a_2^2+...+a_k^2\right)\ge\left(a_1+a_2+...+a_k\right)^2\)

Hay là: \(\left(a_1^2+a_2^2+...+a_k^2\right)\ge\frac{\left(a_1+a_2+...+a_k\right)^2}{k}\)

Ta c/m nó đúng với n = k +1 or \(\left(k+1\right)\left(a_1^2+a_2^2+...+a_k^2+a_{k+1}^2\right)\ge\left(a_1+a_2+...+a_k+a_{k+1}\right)^2\)

Ta có: \(VT=\left(k+1\right)\left(a_1^2+a_2^2+...+a_k^2+a_{k+1}^2\right)\)

\(\ge\left(k+1\right)\left[\frac{\left(a_1+a_2+...+a_k\right)^2}{k}+\frac{a^2_{k+1}}{1}\right]\ge\frac{\left(k+1\right)\left(a_1+a_2+..+a_k+a_{k+1}\right)^2}{k+1}=VP\)

Vậy đpcm là đúng.

P/s: Chả biết đúng không, chưa check, đại khái hướng làm là dùng quy nạp.

15 tháng 3 2020

delllllllllll bt

21 tháng 9 2018

Chả biết đúng hay sai! Cứ làm vậy

Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)

\(=\frac{a_1+a_2+...+a_{n-1}+a_n}{a_2+a_3+..+a_n+a_1}=1\Rightarrow a_1=a_2=...=a_n\) (theo t/c tỉ dãy số bằng nhau)

Do đó:

a) \(\frac{a_1^2+a_2^2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}=\frac{na_1^2}{\left(na_1\right)^2}=\frac{na_1^2}{n^2a_1^2}=\frac{1}{n}\)

b) \(\frac{a_1^7+a_2^7+...+a_n^7}{\left(a_1+a_2+...+a_n\right)^7}=\frac{na_1^7}{\left(na_1\right)^7}=\frac{na_1^7}{n^7a_1^7}=\frac{n}{n^7}\)

21 tháng 9 2018

Bạn gì có nhãn "CTV" gì ấy trả lời đúng không vậy mn? Đang bí bài này...=((

6 tháng 3 2021

a) Đặt \(d=\left(a_1,a_2,...,a_n\right)\Rightarrow\left\{{}\begin{matrix}a_1=dx_1\\a_2=dx_2\\...\\a_n=dx_n\end{matrix}\right.\) (với \(\left(x_1,x_2,...,x_n\right)=1\)).

Ta có \(A_i=\dfrac{A}{a_i}=\dfrac{d^nx_1x_2...x_n}{dx_i}=d^{n-1}\dfrac{x_1x_2...x_n}{x_i}=d^{n-1}B_i\forall i\in\overline{1,n}\).

Từ đó \(\left[A_1,A_2,...,A_n\right]=d^{n-1}\left[B_1,B_2,...,B_n\right]\).

Mặt khác do \(\left(x_1,x_2,...,x_n\right)=1\Rightarrow\left[B_1,B_2,...B_n\right]=x_1x_2...x_n\).

Vậy \(\left(a_1,a_2,...,a_n\right)\left[A_1,A_2,...,A_n\right]=d.d^{n-1}x_1x_2...x_n=d^nx_1x_2...x_n=A\).