Viết phương trình đường thẳng (d) đi qua 2 điểm:
a) O(0 ; 0) và A(4 ; 2)
b) A(0 ; 5) và B(-1; 3)
c) M(-2; 4) và N(2; -2)
d) C(\(\frac{1}{2}\); 3) và D(2; \(\frac{-3}{2}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
Gọi phương trình đường thẳng d cần tìm là y = a x + b ( a ≠ 0 )
Thay tọa độ điểm A vào phương trình đường thẳng d ta được a + b = 2 ⇒ b = 2 – a
Thay tọa độ điểm B vào phương trình đường thẳng d ta được − 2 a + b = 0 ⇒ b = 2 a
Suy ra 2 a = 2 – a ⇔ a = 2 3 ⇒ b = 2. 2 3 = 4 3 ⇒ y = 2 3 x + 4 3 ( T M )
Vậy d: y = 2 3 x + 4 3
Đáp án cần chọn là: D
Lời giải:
VTPT của $(d)$: $(2,-3)$
Đường thẳng $\Delta$ vuông góc với $(d)$ nên VTCP của $(\Delta)$ chính là $(2,-3)$
$\Rightarrow$ VTPT $ của $(\Delta)$ là $(3,2)$
PTĐT $(\Delta)$: $3(x-1)+2(y-2)=0$
$\Leftrightarrow 3x+2y-7=0$
Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)
\(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)
Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)
Gọi pt đường thẳng có dạng \(y=ax+b\), thay tọa độ các điểm vào pt ta được:
a/ \(\left\{{}\begin{matrix}0.a+b=0\\4.a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=0\end{matrix}\right.\) \(\Rightarrow y=\frac{1}{2}x\)
b/ \(\left\{{}\begin{matrix}0.a+b=5\\-1.a+b=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) \(\Rightarrow y=2x+5\)
2 câu sau bạn tự làm tương tự