K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAED và ΔCFB có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

DE=BF

Do đó: ΔAED=ΔCFB

Suy ra:  AE=CF

Xét ΔABF và ΔCDE có

AB=CD

\(\widehat{ABF}=\widehat{CDE}\)

BF=DE

Do đó: ΔABF=ΔCDE

Suy ra: AF=CE

Xét tứ giác AECF có

AF=CE

AE=CF

Do đó: AECF là hình bình hành

26 tháng 7 2015

Xét và có:
DE=FB
 =
AB = DC
  =(c.g.c)
 EC= AF

Ta có: ^DEC + ^FEC = ^AFB+^EFC=180* mà ^DEC=^AFB
-> ^FEC=^EFC -> AF//CE 
Tứ giác AFCE có: EC=AF và AF//CE -> AFCE là hình bình hành


b, Gọi O là giao điểm của AC và EF -> O thuộc BD ( E,F thuộc BD )

Tứ giác ANCM có: AN// MC , AM//CN -> ANCM là hình bình hành.
-> O là giao điểm của AC và MN 
-> AC, MN,BD đồng quy tại O

 

22 tháng 8 2021

là sao bạn

 

a: Xét ΔADE và ΔCBF có

AD=CB

góc ADE=góc CBF

DE=BF

=>ΔADE=ΔCBF

=>AE=CF

Xét ΔABF và ΔCDE có

AB=CD

góc ABF=góc CDE

BF=DE

=>ΔABF=ΔCDE

=>AF=CE

Xét tứ giác AECF có

AE=CF

AF=CE

=>AECF là hình bình hành

b: Xét tứ giác AMCN có

AM//CN

AN//CM

=>AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường(1)

ABCD là hbh

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1), (2) suy ra AC,BD,MN đồng quy

14 tháng 8 2023

Thank 

a: AE\(\perp\)BD

CF\(\perp\)BD

Do đó: AE//CF

Xét ΔAED vuông tại E và ΔCFB vuông tại F có

AD=CB

\(\widehat{ADE}=\widehat{CBF}\)

Do đó: ΔAED=ΔCFB

=>AE=CF

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

b: AE//CF

E\(\in\)AH

F\(\in\)CK

Do đó: AH//CK

AB//CD

K\(\in\)AB

H\(\in\)CD

Do đó: AK//CH

Xét tứ giác AHCK có

AH//CK

AK//CH

Do đó: AHCK là hình bình hành

=>AC cắt HK tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,HK,BD đồng quy

19 tháng 10 2017

a b c d o e f h k

gọi o là giao của 2 đường chéo ac và bd 

xét hbh abcd có 2 đường cháo ac và bd mà 2 đường chéo này lại giao nha ở o (cmt)

=> o là trung điểm của ac ; o là trung điểm của bd

xét tam giác vuông aoe và tâm giác vuông bfc 

có góc aoe = góc foc (đối đỉnh )

ao=oc( o là ủng điểm của oc chứng minh rên)

-> tam giác vông aoe = tam giác vuông bfc( trường hợp cạnh huyền goác nhọn ) 

=> ae=cf (t/c....)

có ae=cf( cùng vuông góc với bd)

=> aecf là hình bình hành ( định nghĩa 3 : 1 cặp cạnh đối song song và = nhau)

b) tự vẽ hình nối thêm cho chính xác nhé

có abcd là hình bình hành (gt)

mà ac và bd giao tại o

-=> o là tủng điểm của ac (t/c...)

có ab//cd=> ak //hc

có ae//fc( vì aecf là hbh chứng minh câu a)=> ah // ck mà ak //ch

=> akch là hbh ( định nghĩa 1: các cặp cạnh đối song song )

có akch là hbh (cmt) có ac và hk là 2 đường chéo 

o là trung điểm của ac (cmt)

=> o là tủng điểm của hk => hk đi qua o mà ac và bd cũng đi qua o (câu a)

=> hk ,ac và bd cùng đi qua o 

=> hk ,bd và ac đồng quy tại o ,

ko hiểu hoặc mk sai  chỗ nào ib hộ mk nhé