Cho hình bình hành ABCD.Trên đường chéo BD vẽ E,F sao cho DE=BF
a.Cm AECF là hình bình hành
b.Vẽ AE cắt DC tại M,CF cắt AD tại N.Cm AC,BD,MN đồng quy tại 1 điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAED và ΔCFB có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
DE=BF
Do đó: ΔAED=ΔCFB
Suy ra: AE=CF
Xét ΔABF và ΔCDE có
AB=CD
\(\widehat{ABF}=\widehat{CDE}\)
BF=DE
Do đó: ΔABF=ΔCDE
Suy ra: AF=CE
Xét tứ giác AECF có
AF=CE
AE=CF
Do đó: AECF là hình bình hành
Xét và có:
DE=FB
=
AB = DC
=(c.g.c)
EC= AF
Ta có: ^DEC + ^FEC = ^AFB+^EFC=180* mà ^DEC=^AFB
-> ^FEC=^EFC -> AF//CE
Tứ giác AFCE có: EC=AF và AF//CE -> AFCE là hình bình hành
b, Gọi O là giao điểm của AC và EF -> O thuộc BD ( E,F thuộc BD )
Tứ giác ANCM có: AN// MC , AM//CN -> ANCM là hình bình hành.
-> O là giao điểm của AC và MN
-> AC, MN,BD đồng quy tại O
a: Xét ΔADE và ΔCBF có
AD=CB
góc ADE=góc CBF
DE=BF
=>ΔADE=ΔCBF
=>AE=CF
Xét ΔABF và ΔCDE có
AB=CD
góc ABF=góc CDE
BF=DE
=>ΔABF=ΔCDE
=>AF=CE
Xét tứ giác AECF có
AE=CF
AF=CE
=>AECF là hình bình hành
b: Xét tứ giác AMCN có
AM//CN
AN//CM
=>AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường(1)
ABCD là hbh
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AC,BD,MN đồng quy
a: AE\(\perp\)BD
CF\(\perp\)BD
Do đó: AE//CF
Xét ΔAED vuông tại E và ΔCFB vuông tại F có
AD=CB
\(\widehat{ADE}=\widehat{CBF}\)
Do đó: ΔAED=ΔCFB
=>AE=CF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: AE//CF
E\(\in\)AH
F\(\in\)CK
Do đó: AH//CK
AB//CD
K\(\in\)AB
H\(\in\)CD
Do đó: AK//CH
Xét tứ giác AHCK có
AH//CK
AK//CH
Do đó: AHCK là hình bình hành
=>AC cắt HK tại trung điểm của mỗi đường(1)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,HK,BD đồng quy
gọi o là giao của 2 đường chéo ac và bd
xét hbh abcd có 2 đường cháo ac và bd mà 2 đường chéo này lại giao nha ở o (cmt)
=> o là trung điểm của ac ; o là trung điểm của bd
xét tam giác vuông aoe và tâm giác vuông bfc
có góc aoe = góc foc (đối đỉnh )
ao=oc( o là ủng điểm của oc chứng minh rên)
-> tam giác vông aoe = tam giác vuông bfc( trường hợp cạnh huyền goác nhọn )
=> ae=cf (t/c....)
có ae=cf( cùng vuông góc với bd)
=> aecf là hình bình hành ( định nghĩa 3 : 1 cặp cạnh đối song song và = nhau)
b) tự vẽ hình nối thêm cho chính xác nhé
có abcd là hình bình hành (gt)
mà ac và bd giao tại o
-=> o là tủng điểm của ac (t/c...)
có ab//cd=> ak //hc
có ae//fc( vì aecf là hbh chứng minh câu a)=> ah // ck mà ak //ch
=> akch là hbh ( định nghĩa 1: các cặp cạnh đối song song )
có akch là hbh (cmt) có ac và hk là 2 đường chéo
o là trung điểm của ac (cmt)
=> o là tủng điểm của hk => hk đi qua o mà ac và bd cũng đi qua o (câu a)
=> hk ,ac và bd cùng đi qua o
=> hk ,bd và ac đồng quy tại o ,
ko hiểu hoặc mk sai chỗ nào ib hộ mk nhé