Gọi a, b, c là số đo ba cạnh của một tam giác, biết a^3+b^3+c^3-3abc=0
Hỏi tam giác đó là tam giác gì?
Giúp mình với mik đang cần rất gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3-3abc=0\)
\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(=>\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\)
\(=>\left(a+b+c\right).\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right).\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(=>\left(a+b+c\right).\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì a,b,c là độ dài 3 cạnh của tam giác nên a,b,c đều lớn hơn 0
\(=>a+b+c\ne0\)
\(=>a^2+b^2+c^2-ab-bc-ac=0\)
\(=>2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\left(1\right)\)
Vì : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{cases}=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\) (với mọi a,b,c)
Để (1) thì \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}=>a=b=c}\)
Vậy tam giác đã cho là tam giác đều
Dấu => thứ 3 mình không hiểu í ạ. Có thể giải thích đc kh ạ?
Ta có: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Dấu bằng xảy ra <=> a+b+c=0 hoặc \(a^2+b^2+c^2-ab-ac-bc=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> a=b=c
Lời giải:
BĐT $\Leftrightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)(*)$
Áp dụng BĐT AM-GM:
$(a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2$
$(b+c-a)(c+a-b)\leq \left(\frac{b+c-a+c+a-b}{2}\right)^2=c^2$
$(a+b-c)(a+c-b)\leq \left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2$
Nhân theo vế 3 BĐT trên:
$[(a+b-c)(b+c-a)(c+a-b)]^2\geq (abc)^2$
$\Rightarrow abc\geq (a+b-c)(b+c-a)(c+a-b)$ (BĐT $(*)$ được cm)
Ta có đpcm.
tam giác đều
tam giác đều nha.