K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2019

a, \(S=3^0+3^2+3^4+3^6+...+3^{2020}\)

\(\Leftrightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2022}\)

\(\Leftrightarrow3^2S-S=3^{2022}-3^0\)

\(\Leftrightarrow9S-S=3^{2022}-1\)

\(\Leftrightarrow8S=3^{2022}-1\Leftrightarrow S=\frac{3^{2022}-1}{8}\)

b,\(S=3^0+3^2+3^4+3^6+...+3^{2020}\)

\(=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}\right)\)

\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{2016}\left(1+3^2+3^4\right)\)

\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{2016}\right)\)

\(=91\left(1+3^6+...+3^{2016}\right)=13.7\left(1+3^6+...+3^{2016}\right)⋮7\)

=> đpcm

26 tháng 9 2019

Tham khảo :

a, S=30+32+34+36+...+32020

⇔32S=32+34+36+38+...+32022

⇔32S−S=32022−30

⇔9S−S=32022−1

⇔8S=32022−1⇔S=32022−18

b,S=30+32+34+36+...+32020

=(30+32+34)+(36+38+310)+...+(32016+32018+32020)

=(1+32+34)+36(1+32+34)+...+32016(1+32+34)

=(1+32+34)(1+36+...+32016)

=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7 (

=> (đpcm)

=>99

18 tháng 12 2021

gải giúp mình với

7 tháng 1 2022

S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = (1 + 3) + (32 + 33) + (34 + 35) + (36 + 37) + (38 + 39) = 1.(1 + 3) + 32.(1 + 3) + 34.(1 + 3) + 36​.(1 + 3) + 38​.(1 + 3) = (1 + 3).(1 + 32 + 34 + 36 + 38) = 4.(1 + 32 + 34 + 36 + 38) => S ⋮ 4. Vậy S ⋮ 4 (đpcm)

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

19 tháng 7 2021

\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\) 

\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\) 

\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\) 

\(S=7.\left(2+2^4+...+2^{28}\right)\) 

⇒ \(S⋮7\)   ( điều phải chứng minh ) 

19 tháng 7 2021

S=21+22+23+...+230

S=(21+22+23)+(24+25+26)+...+(228+229+230)

S=7.2+7.24+...+7.228

S=7.(2+24+...+228)

⇒S⋮7

2 tháng 11 2017

Mình làm nhé ( đây là theo mình nghĩ chứ mình ko biết đúng hay sai )

a ) S = 30 + 31 + 32 + ........ + 32002

\(\Rightarrow3S=3+3^2+3^3+......+3^{2003}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+......+3^{2003}\right)-\left(1+3^1+3^2+.......+3^{2002}\right)\)

\(\Rightarrow2S=3^{2003}-1\)

\(\Rightarrow S=\frac{3^{2003}-1}{2}\)

Vậy \(S=\frac{3^{2003}-1}{2}\)

b ) đề bài sai mong bạn xem lại

2 tháng 11 2017

Nếu các bạn nào ko hiểu thì copy trên mạng và chỉ cho mình copy ở đâu

31 tháng 10 2023

Đề sai rồi bạn