K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

\(42-3|y-3|=4\left(2012-x\right)^4\)

  Do \(4\left(2012-x\right)^4\ge0\)\(\Rightarrow42-3|y-3|\ge0\)

                                                     \(\Leftrightarrow3|y-3|\le42\)

                                                       \(\Leftrightarrow|y-3|\le14\)

   \(\Rightarrow|y-3|\in\left\{0;1;2;...;14\right\}\)

             Có:    42 chia 4 dư 2

                      \(4\left(2012-x\right)^4⋮4\) 

\(\Rightarrow3|y-3|\)   chia 4 dư 2   \(\Rightarrow|y-3|\)chia 4 dư 2

 \(\Rightarrow|y-3|\in\left\{2;6;10;14\right\}\)

       ( Đến đây bạn tự làm được rồi nhé )

#_W

   

7 tháng 10 2019

Thanks bạn nhiều nha

29 tháng 2 2020

Ta có: \(VP\ge0\forall x\)

\(\Rightarrow42-3\left|y-3\right|\ge0\forall y\)

\(\Rightarrow3\left|y-3\right|\le42\)

\(\Rightarrow0\le\left|y-3\right|\le14\)(1)

Mà dễ thấy 42 chẵn, \(4\left(2012-x\right)^4\)chẵn nên \(3\left|y-3\right|\)chẵn

\(\Rightarrow y-3\)chẵn (2)

Từ (1) và (2) suy ra \(\left|y-3\right|\in\left\{2;4;6;8;10;12;14\right\}\)

Mà \(42-3\left|y-3\right|⋮4\)

nên \(\left|y-3\right|\in\left\{2;6;10;14\right\}\)

Thử từng trường hợp ta chỉ thấy \(\left|y-3\right|=14\)thỏa mãn hay \(y\in\left\{17;-11\right\}\)

Lúc đó \(4\left(2012-x\right)^4=0\Rightarrow x=2012\)

11 tháng 4 2020

Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath

Em chỉ cần đổi số 2015 ----> 2012

26 tháng 12 2017

Ta có \(42=3\left|y-3\right|+4\left(2012-x\right)^4\).
Do 42 chia hết cho 3 và 3|y -3| chia hết cho 3 nên \(4\left(2012-x\right)^4\) chia hết cho 3 \(\Rightarrow\left(2012-x\right)^4⋮3\) .
Do 3 là số nguyên tố nên \(2012-x⋮3\) . Đặt \(2012-x=3k\left(k\in Z\right)\).
Ta có \(42=3\left|y-3\right|+4\left(3k\right)^4=3\left|y-3\right|+324k^4\).
Nếu k = 0 hay 2012 - x = 0 \(\Leftrightarrow x=2012\), khi đó:
\(42=3\left|y-3\right|\)\(\Leftrightarrow\left|y-3\right|=14\) \(\Leftrightarrow\left[{}\begin{matrix}y=17\\y=-11\end{matrix}\right.\).
Nếu \(k\ne0\) khi đó \(3\left|y-3\right|+324k^4\ge324>42\) (vô lý).
Vây phương trình có hai cặp nghiệm \(\left(3;17\right),\left(3;-11\right)\).

10 tháng 5 2017

2)

sử dụng phương pháp nhân liên hợp ở pt (1) ta được

\(\hept{\begin{cases}x+\sqrt{2012+x^2}=\sqrt{y^2+2012}-y\\y+\sqrt{y^2+2012}=\sqrt{x^2+2012}-x\end{cases}}\)

cộng 2 vế lại được x=-y

rồi sao?? mik đíu hiểu pt 2 lôi z ở đâu

11 tháng 5 2017

2,RA DUOC X=-Y ...THAY VAO PT 2 TA DC Y^2+Z^2 -4Y-4Z +4+4=0...(Y-2)^2 +(Z-2)^2=0...Y=Z=2 , X=-Y=-2

Bài 2:a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) \(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) \(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) \(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) \(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) Có: \(\left|y+3\right|\ge0\) \(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) Do...
Đọc tiếp

Bài 2:

a. \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\) 

\(\Leftrightarrow\left|y+3\right|=6x-2x^2-2xy-y^2-9\) 

\(\Leftrightarrow\left|y+3\right|=-x^2-2xy-y^2-x^2+6x-9\) 

\(\Leftrightarrow\left|y+3\right|=-\left(x+y\right)^2-\left(x-3\right)^2\) 

\(\Leftrightarrow\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\) 

Có: \(\left|y+3\right|\ge0\) 

\(-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]\le0\) 

Do đó: \(\left|y+3\right|=-\left[\left(x+y\right)^2+\left(x-3\right)^2\right]=0\) 

\(\Leftrightarrow\hept{\begin{cases}y+3=0\\x+y=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\) 

b. \(\left(2x^2+x-2013\right)^2+4\left(x^2-5x-2012\right)^2=4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)\) 

\(\Leftrightarrow\left(2x^2+x-2013\right)^2-4\left(2x^2+x-2013\right)\left(x^2-5x-2012\right)+\left[2\left(x^2-5x-2012\right)\right]^2=0\) 

\(\Leftrightarrow\left(2x^2+x-2013-2x^2+10x+4024\right)^2=0\) 

\(\Leftrightarrow\left(11x+2011\right)^2=0\) 

\(\Leftrightarrow11x+2011=0\) 

\(\Leftrightarrow x=-\frac{2011}{11}\) 

0