Cho hình thang ABCD cân (AB song song CD),AB=2,CD=5 và góc A=127 độ .Tinh diện tích hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAKD vuông tại K và ΔBHC vuông tại H có
AD=BC
góc D=góc C
=>ΔAKD=ΔBHC
=>CH=DK
Xét tứ giác ABHK có
AB//HK
AK//HB
=>ABHK là hình bình hành
=>AB=HK
b: KH=AB=7cm
=>DK+HC=13-7=6cm
=>DK=HC=6/2=3cm
\(BH=\sqrt{13^2-3^2}=\sqrt{160}=4\sqrt{10}\left(cm\right)\)
\(S_{ABCD}=\dfrac{1}{2}\cdot BH\cdot\left(AB+CD\right)\)
\(=\dfrac{1}{2}\cdot4\sqrt{10}\left(7+13\right)=40\sqrt{10}\left(cm^2\right)\)
Kẻ AH và BK vuông góc với CD ta có:
AH//BK mà AB//HK nên ABKH là hình bình hành
Ta có góc H = góc K = 90 độ suy ra hình bình hành ABKH là hình chữ nhật
Suy ra HK=AB=2 (cm) nên DH+CK=CD-HK=5-2=3 (cm)
Xét tam giác AHD và tam giác BKC ta có:
góc H = góc K =90 độ
góc D = góc C (ABCD là hình thang cân)
AD=BC (ABCD là hình thang cân)
Do đó tam giác AHD = tam giác BKC ( cạnh huyền - góc nhọn)
Suy ra DH=CK (2 cạnh tương ứng)
Suy ra DK= 3/2=1.5
Ta lại có góc DAH + góc HAB = góc A
nên góc DAH = góc A - góc HAB = 127-90= 37 độ
tan góc DAH = \(\frac{DH}{AH}\) suy ra AH= \(\frac{DH}{\tan DAH}\)
=\(\frac{1,5}{\tan37}\approx2\left(cm\right)\)
SABCD = \(\frac{\left(AB+CD\right)\cdot AH}{2}=\frac{\left(2+5\right)\cdot2}{2}=7\left(cm^2\right)\)
kẻ bk ⊥ dc ag ⊥ dc
abcd là ht cân
suy ra kc +dg+gk=dc
2kc +ab =dc
kc= dc -ab trên 2 = 10-4 trên 2=3 cm
bk mũ 2 = bc mũ 2 - kc mũ 2 = 5 mũ 2 - 3 mũ 2 =4cm
ta có ih song song kb
di = ib
suy ra ih là đường tb
suy ra ih =1 phần 2 kb = 1 phần 2 nhân 4 =2 cm