K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

Bài 1 :

72x+3 . 75-2x : 7x + 7x = 1

- > 7(2x+3)+(5-2x)-7 + 7x = 1

- > 71 + 7x = 1

- > 7x = 1 - 7 = -6 - > x thuộc rỗng

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

11 tháng 12 2017

Câu b, chuyển 3^2010 thành 2^2010 nhé!

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

8 tháng 12 2016

A=(1+2010)+2010 mũ 2+2010 mũ 3 +...+2010 mũ 6 + 2010 mũ 7

A=2011+2010 mũ 2(1+2010)+...+2010 mũ 6(1+2010)

A=2011+2010 mũ 2.2011+...2010 mũ 6.2011

A=2011(1+2010+...+2010 mũ 6)chia hết cho 2011

24 tháng 2 2017

câu 2 là so sánh nhé các bn các bn giúp mk nhé leuleu

21 tháng 6 2017

M=1+2010+2010^2+2010^3+...+2010^7

Ta có: 2011=1+2010

Số số hạng của tổng M là: (7-0):1+1=8

Mà 8:2=4 nên ta có:

M=(1+2010)+(2010^2+2010^3)+(2010^4+2010^5)+(2010^6+2010^7)

M=2011+2010^2.(1+2010)+2010^4.(1+2010)+2010^6.(1+2010)

M=2011+2010^2.2011+2010^4.2011+2010^6.2011

M=2011.(1+2010^2+2010^4+2010^6)

Vì 2011 chia hết cho 2011 và 1+2010^2+2010^4+2010^6 là số nguyên

Vậy M chia hết cho 2011

Mọi người tk cho mình nha. Mình cảm ơn nhiều ^.<

21 tháng 6 2017

=> 2010M=2010+2010^3+2010^4+...+2010^8 

=> M=2010^8-1/2009

=> M chia hết 2011

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé.