Cho góc nhìn xOy , kể thêm tia phân giác Oz. Trên tia Ox lấy A, Oy lấy B sao cho OA=OB. Trên Oz lấy điểm I bất kì. Chứng minh OI là đường trung trực của AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
a: Xét ΔAOI và ΔBOI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔAOI=ΔBOI
Suy ra: IA=IB
Ta có hình vẽ:
a) Vì Oz là phân giác của xOy nên
Xét Δ AOI và Δ BOI có:
OA = OB (gt)
AOI = BOI (cmt)
OI là cạnh chung
Do đó, Δ AOI = Δ BOI (c.g.c) (đpcm)
b) Xét Δ AOH và Δ BOH có:
OA = OB (gt)
AOH = BOH (câu a)
OH là cạnh chung
Do đó, Δ AOH = Δ BOH (c.g.c)
=> AHO = BHO (2 góc tương ứng)
Mà AHO + BHO = 180o (kề bù) nên AHO = BHO = 90o
=>
Xét \(\Delta\)AOM và \(\Delta\)BOM có:
OA=OB (gt)
góc AOM=góc BOM (do Oz là phân giác góc xOy)
OM chung
=> \(\Delta\)AOM = \(\Delta\)BOM (c.g.c) (1)
(1) => góc AMO=góc BMO (2 góc tương ứng)
=> MO là phân giác góc AMB (dpcm)
(1) => AM=BM (2 góc tương ứng)
=> \(\Delta\)ABM cân tại M (dhnb)
Xét \(\Delta\)ABM cân tại M có tia phân giác MO đồng thời là đường trung trực của cạnh AB (t/c các đường đặc biệt trong \(\Delta\)cân) (dpcm)