Tìm x , cho n thuộc N
\(\left(\left|x-1\right|-2016\right)^{\left(n+2018\right)\left(n+2019\right)}=-\left(2^2-3^2\right)^{2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(|x|-2017\right)^{\left(n+2018\right)\cdot\left(n+2019\right)}=-\left(2^3-3^2\right)^{2019}\)
\(\left(\left|x\right|-2017\right)^{\left(n+2018\right)\left(n+2019\right)}=-\left(2^3-3^2\right)^{2019}\)
\(\left(\left|x\right|-2017\right)^{\left(n+2018\right)\left(n+2019\right)}=-\left(-1\right)^{2019}=1\)
\(\Rightarrow\orbr{\begin{cases}\left(n+2018\right)\left(n+2019\right)=0\\\left|x\right|-2017=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\orbr{\begin{cases}n=-2018\\n=-2019\end{cases}}\\\orbr{\begin{cases}x=2018\\x=-2018\end{cases}}\end{cases}}\)
Đặt x - 2017 = a
Phương trình trên tương đương:
\(\dfrac{\left(-a\right)^2-\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}{\left(-a\right)^2+\left(-a\right)\left(a-1\right)+\left(a-1\right)^2}=\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{a^2+a^2-a+a^2-2a+1}{a^2-a^2+a+a^2-2a+1}=\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3a^2-3a+1}{a^2-a+1}=\dfrac{5}{3}\)
\(\Leftrightarrow9x^2-9x+3=5x^2-5x+5\)
\(\Leftrightarrow4x^2-4x-2=0\)
\(\Leftrightarrow\left(x-\dfrac{1+\sqrt{3}}{2}\right)\left(x-\dfrac{1-\sqrt{3}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1+\sqrt{3}}{2}\\\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình: \(S=\left\{\dfrac{1+\sqrt{3}}{2};\dfrac{1-\sqrt{3}}{2}\right\}\)
Ta có: \(x+2y+3x=0\Leftrightarrow x=-\left(2y+3z\right)\)
Lại có: \(2xy+6yz+3xz=0\Leftrightarrow x\left(2y+3z\right)+6yz=0\)
\(\Leftrightarrow-\left(2y+3z\right)\left(2y+3z\right)+6yz=0\Leftrightarrow-\left(2y+3z\right)^2+6yz=0\)
\(\Leftrightarrow\left(2y+3z\right)^2-6yz=0\Leftrightarrow4y^2+12yz+9z^2-6yz=0\)
\(\Leftrightarrow4y^2+6yz+9z^2=0\Leftrightarrow\left(2y+\dfrac{3z}{2}\right)^2+\dfrac{27z^2}{4}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2y+\dfrac{3z}{2}\right)^2=0\\\dfrac{27z^2}{4}=0\end{matrix}\right.\) \(\Rightarrow y=z=0\Rightarrow x=0\)
\(\Rightarrow S=\dfrac{\left(-1\right)^{2019}-1^{2017}+\left(-1\right)^{2015}}{1^{2018}+2.0^{2016}+0^{2014}+2}=\dfrac{-1-1+-1}{1+0+0+2}=\dfrac{-3}{3}=-1\)
Dễ thấy \(x=2017\)không là nghiệm của phương trình.
Ta có:
\(\frac{1+\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)^2}{1-\frac{x-2018}{2017-x}+\left(\frac{x-2018}{2017-x}\right)}=\frac{13}{37}\)
Đặt \(\frac{x-2018}{2017-x}=a\)
\(\Rightarrow\frac{1+a+a^2}{1-a+a^2}=\frac{13}{37}\)
\(\Leftrightarrow24a^2+50a+24=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\\a=-\frac{4}{3}\end{cases}}\)
\(f\left(2k-1\right)=\left[\left(2k-1\right)^2+2k-1+1\right]^2+1\)
\(=\left(4k^2+1-2k\right)^2+1=\left(4k^2+1\right)^2-4k\left(4k^2+1\right)+4k^2+1\)
\(=\left(4k^2+1\right)\left(4k^2-4k+2\right)=\left(4k^2+1\right)\left[\left(2k-1\right)^2+1\right]\)
\(f\left(2k\right)=\left(4k^2+1+2k\right)^2+1=\left(4k^2+1\right)^2+4k\left(4k^2+1\right)+4k^2+1\)
\(=\left(4k^2+1\right)\left(4k^2+4k+2\right)=\left(4k^2+1\right)\left[\left(2k+1\right)^2+1\right]\)
\(\Rightarrow\frac{f\left(2k-1\right)}{f\left(2k\right)}=\frac{\left(4k^2+1\right)\left[\left(2k-1\right)^2+1\right]}{\left(4k^2+1\right)\left[\left(2k+1\right)^2+1\right]}=\frac{\left(2k-1\right)^2+1}{\left(2k+1\right)^2+1}\)
\(\Rightarrow\frac{f\left(1\right).f\left(3\right).f\left(5\right)...f\left(2k-1\right)}{f\left(2\right).f\left(4\right).f\left(6\right)...f\left(2k\right)}=\frac{2}{10}.\frac{10}{16}.\frac{16}{50}...\frac{\left(2k-3\right)^2+1}{\left(2k-1\right)^2+1}.\frac{\left(2k-1\right)^2+1}{\left(2k+1\right)^2+1}=\frac{2}{\left(2k+1\right)^2+1}\)
\(\Rightarrow\frac{f\left(1\right)f\left(3\right)...f\left(2017\right)}{f\left(2\right)f\left(4\right)...f\left(2018\right)}=\frac{2}{2019^2+1}=\frac{1}{2038181}\)