cho tam giác ABC, các đường cao BD và CE. Gọi M, N là chân các đường vuông góc kẻ từ B và C đến đương thẳng DE. Gọi I, K lần lượt là trung điểm của DE và BC. CM EM = DN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)XÉT \(\Delta BEC\left(\widehat{BEC}=90^0\right)\)CÓ
MB=MC(gt) \(\Rightarrow\)EM LÀ ĐƯỜNG TRUNG TUYẾN CỦA\(\Delta BEC\)
\(\Rightarrow EM=\frac{BC}{2}\)(TÍNH CHẤT ĐƯỜNG TRUNG TUYẾN TRONG TAM GIÁC VUÔNG)\(\left(1\right)\)
XÉT \(\Delta CDB\left(\widehat{CDB}=90^0\right)\)CÓ
MB=MC\(\Rightarrow\)DM LÀ ĐƯỜNG TRUNG TUYẾN CỦA \(\Delta CDB\)
\(\Rightarrow DM=\frac{BC}{2}\)(TÍNH CHẤT ĐƯỜNG TRUNG TUYẾN TRONG TAM GIÁC VUÔNG)\(\left(2\right)\)
TỪ (1) VÀ (2) SUY RA \(EM=DM\left(=\frac{BC}{2}\right)\)
\(\Rightarrow\Delta EMD\)CÂN TẠI M
MẶT KHÁC : XÉT \(\Delta EMD\)CÓ
I LÀ TRUNG ĐIỂM CỦA DE (gt)
HAY IM LÀ ĐƯỜNG TRUNG TUYẾN CỦA \(\Delta EMD\)
VÌ \(\Delta EMD\)CÂN TẠI M NÊN IM VỪA LÀ ĐƯỜNG TRUNG TUYẾN VỪA LÀ ĐƯỜNG CAO CỦA \(\Delta EMD\)
\(\Rightarrow MI\perp DE\)
b) XÉT TỨ GIÁC BEDC CÓ
\(MI\perp ED\)
\(CD\perp ED\)
\(\Rightarrow BHDC\)LÀ HÌNH THANG
XÉT HÌNH THANG BHDC CÓ
\(MI\perp HD\)
\(DC\perp HD\)
\(\Rightarrow\)MI //CD
BM=MC(gt)
\(\Rightarrow\)MI LÀ ĐƯỜNG TRUNG BÌNH CỦA HÌNH THANG BEDC
\(\Rightarrow IH=IK\)
TA CÓ \(EH=IH-IE\)
\(DK=IK-ID\)
MÀ \(IE=ID\left(gt\right)\);\(IH=IK\left(cmt\right)\)
\(\Rightarrow EH=DK\)
có thể cm \(IH=IK\)theo cách khác là
ta có \(MI\perp HD\)
\(BH\perp HD\)
\(CK\perp HD\)
\(\Rightarrow\)MI //BH // CK
mặt khác ta có BM=MC
\(\Rightarrow IH=IK\)(tính chất các đường thẳng song song cách đều)