Tìm x, y, z biết:
\(\frac{x}{5}=\frac{y}{4};x^2-y^2=81\) với \(x,y>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)
=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)
Vậy ...
b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy ...
Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)
Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .
b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha
Hok tốt
a) Ta có:
\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)
Vậy \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} = - 4\)
Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96
bạn đúng đề:
\(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}=\frac{x-5+y-4+z-3}{3+4+5}=\frac{36}{12}=3\)
\(\frac{x-5}{3}=3=\frac{x}{3}=3=9\Rightarrow x-5=9=14\Rightarrow x=14\)
\(\frac{y-4}{4}=3=\frac{y}{4}=3=12\Rightarrow y-4=12\Rightarrow16\)=> y=16
\(\frac{z-3}{5}=3=\frac{z}{5}=3=15\Rightarrow z-3=15=18\Rightarrow z=18\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a)ta có xy=7*9=7*3*3
vậy x =9;21 , y=7;3
b) xy=-2*5
mà x<0<y
nên x=-2 ,y=5
c)x-y=5 hay x=y+5
\(\frac{y+5+4}{y-5}=\frac{4}{3}\Rightarrow3y+27=4y-20\Rightarrow y=47\Rightarrow x=52\)
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo t/s dãy tỉ số bằng nhau có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=>\(\frac{x}{8}=2\Rightarrow x=2.8=16\)
=>\(\frac{y}{12}=2\Rightarrow y=2.12=24\)
=>\(\frac{z}{15}=2\Rightarrow z=2.15=30\)
Vậy x=16; y=24; z=30.
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{z}{15}\)
=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
=> x=2.8=16
y=2.12=24
z=2.15=30
theo đề ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}\)
và x - y + z = 10
áp dụng t/c DTSBN ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{4}=\frac{x-y+z}{5-7+4}=\frac{10}{2}=5\)
=> \(\hept{\begin{cases}\frac{x}{5}=5=>x=25\\\frac{y}{7}=5=>y=35\\\frac{z}{4}=5=>z=20\end{cases}}\)
vậy x = 25 ; y = 35 ; z = 20
t i c k nhé!! 3645475677568768457765687876989872452536457657567568767876
Áp dụng tính chất của dãy tỉ số = nhau ta có:
x/5 = y/7 = z/4 = x-y+z/5-7+4 = 10/2 = 5
=> x = 5×5 = 25
=> y = 5×7 = 35
=> z = 5×4 = 20
Theo đề bài: \(\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\\frac{x}{4}=\frac{z}{7}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{20}\\\frac{x}{12}=\frac{z}{21}\end{cases}}\Leftrightarrow\frac{x}{12}=\frac{y}{20}=\frac{z}{21}}\)
Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{x}{12}=\frac{y}{20}=\frac{z}{21}=\frac{x+y-z}{12+20-21}=\frac{110}{11}=10\)
Suy ra \(x=10.12=120\); \(y=10.20=200\); \(z=10.21=210\)
Vậy ...
Lê Tài Bảo Châu làm dài quá. Thừa một TH rồi ng ta yêu cầu x và y lớn hơn 0 mà
\(x^2-y^2=81\left(1\right)\)
Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}\left(2\right)}\)
Thay (2) vào (1) ta được:
\(\left(5k\right)^2-\left(4k\right)^2=81\)
\(\Leftrightarrow25k^2-16k^2=81\)
\(\Leftrightarrow9k^2=81\)
\(\Leftrightarrow k^2=9\)
\(\Leftrightarrow k=\pm3\)
TH1: Thay k=3 vào (2) ta được:
\(\hept{\begin{cases}x=3.5=15\\y=4.3=12\end{cases}}\)
TH2: Thay k=-3 vào (2) ta được:
\(\hept{\begin{cases}x=-3.5=-15\\y=-3.4=-12\end{cases}}\)
Vậy \(\left(x,y\right)=\left\{\left(15;12\right);\left(-15;-12\right)\right\}\)