38.Tìm giá trị lớn nhất nhỏ nhất của hàm số y=3(3sinx+4cosx)\(^2\)+4(3sinx+4cosx)+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
y = 3 sin x + 4 cos x + 1 = 5 sin ( x + α ) + 1 , ( c os α = 3 5 , sin α = 4 5 ) − 1 ≤ sin ( x + α ) ≤ 1 ⇒ − 5 ≤ 5 sin ( x + α ) ≤ 5 ⇒ − 4 ≤ 5 sin ( x + α ) + 1 ≤ 6
Lời giải:
Đặt \(3\sin x+4\cos x=t\)
Áp dụng BĐT Bunhiacopxky:
\(t^2=(3\sin x+4\cos x)^2\leq (3^2+4^2)(\sin ^2x+\cos ^2x)=25\)
\(\Rightarrow -5\leq t\leq 5\)
Với $t\in [-5;5]$ ta có:
\(y=3t^2+4t+1\leq 3.25+4.5+1=96\)
Mặt khác: \(y=3t^2+4t+1=3(t+\frac{2}{3})^2-\frac{1}{3}\)
\((t+\frac{2}{3})^2\geq 0, \forall t\in [-5;5]\Rightarrow y\geq -\frac{1}{3}\)
Vậy \(y_{\min}=\frac{-1}{3}; y_{\max}=96\)