K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 10 2019

Lời giải:

Đặt \(3\sin x+4\cos x=t\)

Áp dụng BĐT Bunhiacopxky:

\(t^2=(3\sin x+4\cos x)^2\leq (3^2+4^2)(\sin ^2x+\cos ^2x)=25\)

\(\Rightarrow -5\leq t\leq 5\)

Với $t\in [-5;5]$ ta có:

\(y=3t^2+4t+1\leq 3.25+4.5+1=96\)

Mặt khác: \(y=3t^2+4t+1=3(t+\frac{2}{3})^2-\frac{1}{3}\)

\((t+\frac{2}{3})^2\geq 0, \forall t\in [-5;5]\Rightarrow y\geq -\frac{1}{3}\)

Vậy \(y_{\min}=\frac{-1}{3}; y_{\max}=96\)

26 tháng 11 2018

Đáp án C

10 tháng 12 2019

15 tháng 8 2019

27 tháng 9 2018

Đáp án là A

18 tháng 1 2018

Đáp án C

23 tháng 1 2018

20 tháng 1 2019

Đáp án C

y = 3 sin x + 4 cos x + 1 = 5 sin ( x + α ) + 1 ,     ( c os α = 3 5 , sin α = 4 5 ) − 1 ≤ sin ( x + α ) ≤ 1 ⇒ − 5 ≤ 5 sin ( x + α ) ≤ 5 ⇒ − 4 ≤ 5 sin ( x + α ) + 1 ≤ 6

17 tháng 2 2018

Đáp án C

23 tháng 8 2017

Đáp án đúng : C