Cmr biểu thức luôn âm:
-1/3x^2+2x-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-3x^2+2x-1
=-3(x^2-2/3x+1/3)
=-3(x^2-2*x*1/3+1/9+2/9)
=-3(x-1/3)^2-2/3<=-2/3<0 với mọi x
\(x^4+2x^3-3x^2-4x+4=\left(x^4+2x^3+x^2\right)-4\left(x^2+x\right)+4\)
\(=\left(x^2+x\right)^2-4\left(x^2+x\right)+4=\left(x^2+x-2\right)^2\ge0\)
\(\Rightarrow\)ĐPCM
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
(1-2x)(x-1)-5
=-2x2+3x-1-5
=-2x2+3x-6
=-2(x2-3/2x+3)
=-2(x-3/4)2-39/8
Vì (x-3/4)2≥0 với mọi x
⇒-2(x-3/4)2≤0
⇒-2(x-3/4)2-39/8<0
Vậy biểu thức (1-2x)(x-1)-5 luôn âm với mọi x
\(-3x^2+x-20=-3\left(x^2-\dfrac{1}{3}x+\dfrac{20}{3}\right)\)
\(=-3\left(x^2-2.\dfrac{1}{6}x+\dfrac{1}{36}+\dfrac{239}{36}\right)=-3\left[\left(x-\dfrac{1}{6}\right)^2+\dfrac{239}{36}\right]\)
\(=-3\left(x-\dfrac{1}{6}\right)^2-\dfrac{239}{12}\le-\dfrac{239}{12}< 0\left(\forall x\right)\)
Ta có: \(-3x^2+x-20\)
\(=-3\left(x^2-\dfrac{1}{3}x+\dfrac{20}{3}\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{1}{6}+\dfrac{1}{36}\right)-\dfrac{239}{12}\)
\(=-3\left(x-\dfrac{1}{6}\right)^2-\dfrac{239}{12}< 0\forall x\)(đpcm)
Bài 1
\(a,\)\(49x^2-28x+7\)
\(=\left(7x\right)^2-2.7x.2+2^2+3\)
\(=\left(7x-2\right)^2+3\ge3\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(7x-2\right)^2=0\)
\(\Rightarrow7x-2=0\)
\(\Rightarrow x=\frac{2}{7}\)
Bài 1 b
\(x^2+\frac{2}{5}x+\frac{1}{5}\)
\(=x^2+2.x.\frac{1}{5}+\frac{1}{25}+\frac{4}{25}\)
\(=\left(x+\frac{1}{5}\right)^2+\frac{4}{25}\ge\frac{4}{25}\)( luôn dương )
Dấu bằng sảy ra khi và chỉ khi \(\left(x+\frac{1}{5}\right)^2=0\)
\(\Rightarrow x+\frac{1}{5}=0\)
\(\Rightarrow x=-\frac{1}{5}\)
em ko biết,em mới lớp 5 thui mừ
Ta có: \(3x^2+2x-5=3\left(x^2+\frac{2}{3}x-\frac{5}{3}\right)\)
\(=3\left(x^2+2.\frac{1}{3}x+\frac{1}{9}-\frac{16}{9}\right)\)
\(=3\left[\left(x+\frac{1}{3}\right)^2-\frac{16}{9}\right]\)
\(=3\left(x+\frac{1}{3}\right)^2-\frac{16}{3}\ge\frac{-16}{3}\left(????\right)\)