CMR: Các số sau là SCP
A = \(\frac{11.......1}{2n}\) - \(\frac{88.......8}{2n}\) + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d thuộc ưc nguyên tố của ( 2n+!; 2n^2 -1); ta có
a; \(\frac{2n+1}{2n^2-1}=\frac{2\left(n^2+1\right)}{2n-1}=\frac{2n^2+2}{2n-1}\)cchia hết cho d
=> 2n^2+2-2n^2-chia hết choi d
=> 1 chia hết cho d=> d=1
vậy 2n+1/2n^2-1 nguyên tố cùng nhau
a) \(A=111...1555...56\) (n cs 1, n-1 cs 5)
\(A=111...1000...0+555...50+6\) (n cs 1, n cs 0 (không tính số 0 ở số 555...50), n-1 cs 5)
\(A=111...1.10^n+555...5.10+6\) (n cs 1, n-1 cs 5)
\(A=\dfrac{999...9}{9}.10^n+\dfrac{5}{9}.999...9.10+6\) (n cs 9 ở phân số thứ nhất, n-1 cs 9 ở phân số thứ 2)
\(A=\dfrac{10^n-1}{9}.10^n+\dfrac{5}{9}.\left(10^{n-1}-1\right).10+6\)
\(A=\dfrac{\left(10^n\right)^2-10^n+5.10^n-50+54}{9}\)
\(A=\dfrac{\left(10^n\right)^2+4.10^n+4}{9}\)
\(A=\left(\dfrac{10^n+2}{3}\right)^2\)
Hiển nhiên \(3|10^n+2\) vì \(10^n+2\) có tổng các chữ số bằng 3, suy ra A là số chính phương.
Câu b áp dụng kĩ thuật tương tự nhé bạn.
a) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d
2n+3 ⋮ d
=> (2n+3)-(2n+2) ⋮ d => 1⋮ d
Mà d ∈ N* => d =1
=> ƯCLN(n+1, 2n+3) = 1
Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)
b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)
=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d
4n+8 ⋮ d
=> (4n+8)-(4n+6) ⋮ d => 2⋮ d
Mà d ∈ N* => d =1; 2
Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2
=> d ≠ 2 => d = 1
=> ƯCLN(2n+3, 4n+8)=1
Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm)
) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d
2n+3 ⋮ d
=> (2n+3)-(2n+2) ⋮ d => 1⋮ d
Mà d ∈ N* => d =1
=> ƯCLN(n+1, 2n+3) = 1
Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)
b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)
=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d
4n+8 ⋮ d
=> (4n+8)-(4n+6) ⋮ d => 2⋮ d
Mà d ∈ N* => d =1; 2
Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2
=> d ≠ 2 => d = 1
=> ƯCLN(2n+3, 4n+8)=1
Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm)
Cao yến Chi14 tháng 4 2020 lúc 12:42bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
\(\frac{n+1}{2n+3}\)
Gọi ƯCLN(n + 1, 2n + 3) là a
Ta có:
n + 1\(⋮\)a
\(\Rightarrow\)2(n + 1)\(⋮\)a
\(\Leftrightarrow\)2n + 2\(⋮\)a
2n + 3\(⋮\)a
\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a
\(\Rightarrow\)1\(⋮\)a
\(\Rightarrow\)a = 1
\(\frac{2n+1}{3n+2}\)
Gọi ƯCLN(2n + 1, 3n + 2) là b
Ta có:
2n + 1\(⋮\)b
\(\Rightarrow\)3.(2n + 1)\(⋮\)b
\(\Leftrightarrow\)6n + 3\(⋮\)b (1)
3n + 2\(⋮\)b
\(\Rightarrow\)2.(3n + 2)\(⋮\)b
\(\Leftrightarrow\)6n + 4\(⋮\)b (2)
Từ (1), (2) ta có:
(6n + 4) - (6n + 3)\(⋮\)b
\(\Leftrightarrow\)1\(⋮\)b
\(\Rightarrow\)b = 1
Vậy ƯCLN(2n + 1, 3n + 2) là 1
\(\Rightarrow\)Phân số tối giản