Cho x > 2. Chung minh \(\frac{x^2}{x-2}\ge8\)bang bat dang thuc Cauchy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ x2 + xy + y2 + 1
= [x2 + 2.x.\(\dfrac{y}{2}\) + (\(\dfrac{y}{2}\) )2 ] + \(\dfrac{3y^2}{4}\) + 1
= ( x + \(\dfrac{y}{2}\) )2 + \(\dfrac{3y^2}{4}\) + 1
Vì \(\left(x+\dfrac{y}{2}\right)^2\) \(\ge\) 0 với mọi x;y
và \(\dfrac{3y^2}{4}\ge0\) với mọi x;y
=> \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}\ge0\) với mọi x;y
=> \(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0\)
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có :)
\(\hept{\begin{cases}a^2+b^2\ge2\sqrt{a^2b^2}=2|ab|\\b^2+c^2\ge2\sqrt{b^2c^2}=2|bc|\\c^2+a^2\ge\sqrt{c^2a^2}=2|ca|\end{cases}}\Rightarrow\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge8|\left(abc\right)^2|=8a^2b^2c^2\)
(vì a2+b2; b2+c2; c2+a2;|ab|;|bc|;|ca| đều \(\ge0\))
https://olm.vn/hoi-dap/question/41860.html
bn vào đây tham khảo nha
\(a^2+b^2\ge2ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2\ge2ab\)
Áp dụng vào ta được :
\(a^2+1\ge2a\)
\(b^2+1\ge2b\)
\(c^2+1\ge2c\)
\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)(ĐPCM)
Bien doi tuong BDT
\(\frac{x^2}{x-2}\ge8\)
\(\Leftrightarrow x^2\ge8x-16\)
\(\Leftrightarrow x^2-8x+16\ge0\)
\(\Leftrightarrow\left(x-4\right)^2\ge0\left(True\right)\)
Dau '=' xay ra khi \(x=4\)