K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(AD\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

b) Xét tứ giác ADHE có 

\(\widehat{EAD}=90^0\)

\(\widehat{AEH}=90^0\)

\(\widehat{ADH}=90^0\)

Do đó: ADHE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: AH=DE(hai đường chéo)(3)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)(4)

Từ (3) và (4) suy ra \(DE^2=HB\cdot HC\)

undefinedMình làm hơi tắt chút do ngại trình bầy cái định lý pi - ta - go ở tam giác BDE

12 tháng 6 2020

A B C H

Bài làm:

Ta có:
Xét trong tam giác vuông BHA vuông tại H có:
\(\widehat{BAH}+\widehat{ABH}=90^0\Rightarrow\widehat{BAH}=90^0-\widehat{ABH}=90^0-\widehat{B}\)
(1)

Xét trong tam giác vuông ABC vuông tại A có:

\(\widehat{ABC}+\widehat{ACB}=90^0\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{B}\)(2)

Từ (1) và (2)

=> \(\widehat{BAH}=\widehat{ACB}=\widehat{C}\)

b) Phần b mình nghĩ bạn viết sai đề rồi nhé

Mình nghĩ đề sửa lại phải là: \(AB^2+CH^2=AC^2+BH^2\)

Xét tam giác vuông AHB vuông tại H có:

\(AB^2=BH^2+AH^2\)\(\Rightarrow AB^2-BH^2=AH^2\left(3\right)\)

Xét tam giác vuông AHC vuông tại H có:

\(AC^2=CH^2+AH^2\)\(\Rightarrow AC^2-CH^2=AH^2\)(4)

Từ (3) và (4)

=> \(AB^2-BH^2=AC^2-CH^2\)

<=> \(AB^2+CH^2=AC^2+BH^2\)

=> ĐPCM

Học tốt!!!!


 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm

28 tháng 6 2023

bạn ghi cách ra sẽ dễ thấy hơi á

Sửa đề: ΔABC vuông tại A

a: MB/NH=BH^2/AB:CH^2/AC

=BH^2/CH^2*AC/AB

=(AB/AC)^4*AC/AB=AB^3/AC^3

b: BC*BM*CN

=BC*BH^2/AB*CH^2/AC

=AH^4/AH=AH^3

c: ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nen AN*AC=AH^2

ΔABC vuông tại A có AH vuông góc BC

nên HB*HC=AH^2

=>HB*HC=AM*AB

góc AMH=góc ANH=góc MAN=90 độ

=>AMHN là hình chữ nhật

=>AH=MN

=>AM*AB=HB*HC=MN^2

d: BM*BA+AN*AC

=BH^2+AH^2=AB^2=BH*BC

a: Xét ΔIAC vuông tại I và ΔABC vuông tại A có

góc C chung

Do đó: ΔIAC∼ΔABC

b: Xét ΔABC vuông tại A có AI là đường cao

nên \(AI^2=IB\cdot IC\)