K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 9 2019

\(0< a;b;c< 1\Rightarrow\left\{{}\begin{matrix}a^3< a^2< a< 1\\b^3< b^2< b< 1\\c^3< c^2< c< 1\end{matrix}\right.\)

\(\Rightarrow\left(1-a\right)\left(1-b^2\right)>0\Rightarrow1+ab^2>a+b^2>a^3+b^3\)

Tương tự: \(1+b^2c>b^3+c^3\); \(1+ca^2>a^3+c^3\)

Cộng vế với vế: \(3+a^2b+b^2c+c^2a>2a^3+2b^3+2c^3\)

Đẳng thức không xảy ra

29 tháng 9 2019

Câu hỏi của dbrby - Toán lớp 10 | Học trực tuyến giúp em đi, khó quá:( pqr mãi ko ra:(

5 tháng 7 2019

\(0\le a,b,c\le1\)\(\Rightarrow\)\(\hept{\begin{cases}a-1\le0\\b-1\le0\\c-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2-a\le0\\b^2-b\le0\\c^2-c\le0\end{cases}}}\)

\(\Rightarrow\)\(\hept{\begin{cases}\left(a^2-a\right)\left(b-1\right)\ge0\\\left(b^2-b\right)\left(c-1\right)\ge0\\\left(c^2-c\right)\left(a-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2b\ge a^2+ab-a\\b^2c\ge b^2+bc-b\\c^2a\ge c^2+ca-c\end{cases}}}\)

\(\Rightarrow\)\(a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)-\left(a+b+c\right)\) (1) 

Và \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)\ge0\\\left(b-1\right)\left(c-1\right)\ge0\\\left(c-1\right)\left(a-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}ab\ge a+b-1\\bc\ge b+c-1\\ca\ge c+a-1\end{cases}}}\)

\(\Rightarrow\)\(ab+bc+ca\ge2\left(a+b+c\right)-3\) (2) 

(1), (2) \(\Rightarrow\)\(3+a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(a+b+c\right)\)

Lại có: \(\hept{\begin{cases}a\le1\\b\le1\\c\le1\end{cases}\Leftrightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\Leftrightarrow\hept{\begin{cases}a^3\le a^2\\b^3\le b^2\\c^3\le c^2\end{cases}}}\)

\(\Rightarrow\)\(3+a^2b+b^2c+c^2a\ge\left(a^2+b^2+c^2\right)+\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)\)

\(\ge2\left(a^3+b^3+c^3\right)=2a^3+2b^3+2c^3\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=1;b=1;c=0\) và các hoán vị 

12 tháng 6 2020

Phùng Minh Quân ơi câu trả lời của bạn dài quá. Bạn có thể trả lời ngắn hơn mà.

26 tháng 4 2020

BĐT cần  chứng minh tương đương với :

\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)

\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)

Áp dụng BĐT Cô-si cho 3 số dương ,ta có :

\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)

tương tự :  \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\)\(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)

Cộng 3 BĐT trên theo vế, ta được :

\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)

Dấu "=" xảy ra khi a = b = c = 1

5 tháng 7 2019

\(VT\le\frac{1}{\sqrt[3]{9}}\left(\frac{a+2b+3+3}{3}+\frac{b+2c+3+3}{3}+\frac{c+2a+3+3}{3}\right)\)

\(=\frac{1}{\sqrt[3]{9}}.\frac{3\left(a+b+c\right)+18}{3}=\frac{9}{\sqrt[3]{9}}=\sqrt[3]{81}=3\sqrt[3]{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)