cho A=3+3^2+3^3+3^4+.....+3^100
dag can gap lam
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(B=4+3^2+3^3+...+3^{2004}\)
\(=1+3+3^2+3^3+...+3^{2004}\)
\(\Rightarrow3B=3+3^2+3^3+3^4+...+3^{2005}\)
\(\Rightarrow3B-B=\left(3+3^2+3^3+...+3^{2005}\right)-\left(1+3+3^2+...+3^{2004}\right)\)
\(\Rightarrow2B=3^{2005}-1\)
\(\Rightarrow B=\frac{3^{2005}-1}{2}< 3^{2005}\)
Hay : \(B< C\)
Vậy : \(B< C\)
Hình như sai đề hay sao đấy bạn Nam đáng lẽ 4 thành 3
Sửa lại :
\(B=3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\)
\(3B=3.\left(3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\right)\)
\(=3^2+3^3+3^4+3^5+...+3^{2004}+3^{2005}\)
\(3B-B=\left(3^2+3^3+3^4+3^5+...+3^{2004}+3^{2005}\right)-\left(3+3^2+3^3+3^4+...+3^{2003}+3^{2004}\right)\)
\(2B=3^{2005}-3\)
\(B=\frac{3^{2005}-3}{2}< 3^{2005}=C\)
\(\Rightarrow B< C\)
Trả lời :
Cho A = 3+32+33+34+...+3903+32+33+34+...+390 . Chứng minh rằng A chia hết cho 11 và 13
Bài làm:
Ta có : A = (3+32+33+34+35)+...+(386+387+388+389+390)
= 3(1+3+32+33+34)+...+386(1+3+32+33+34)
= 3 . 121 + 36 . 121 + ... + 386 . 121
= 3 . 11 . 11 + 36 . 11 . 11 + ... + 386 . 11 . 11 ⋮ 11
⇒ A ⋮11
A = ( 3+32+33)+(34+35+36)+...+(388+389+390)
= 3(1+3+32) + 34(1+3+32) + ... + 388(1+3+32)
= 3 . 13 + 34 . 13 + ... + 388 . 13 ⋮13
⇒ A ⋮ 13
Vậy A chia hết cho 11 và 13
Hok_Tốt
#Thiên_Hy
* = 1 ; 2 ; 3 ; 4 5 ; 6 ; 7 ; 8 ; 9 ; 0
b/ 120 - x : 4 = 34 : 311
120 - x : 4 = 37
120 - x : 4 = 2187
x : 4 = 120 - 2187
x : 4 = -2067
=> x = -8268
a) 3*2 có tận cùng là 2 nên chia hết cho 2
vậy * = 0;1;2 ... 9
b) 120 - x : 4 = \(3^4:3^{11}\)
120 - x : 4 = \(-\left(3^7\right)\)
x : 4 = 120 - \(\left[-\left(3^7\right)\right]\)
x : 4 = 2307
x = 2307 x 4
x = 9228
Lần sau viết cái đề rõ rõ ra nhs!!!
a) \(A=2+2^2+2^3+................+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+................+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+..............+2^{100}+2^{101}\right)-\left(2+2^2+............+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
b) \(B=1+3+3^2+..................+3^{2009}\)
\(\Rightarrow3B=3+3^2+3^3+..................+3^{2009}+3^{2010}\)
\(\Rightarrow3B-B=\left(3+3^2+...............+3^{2010}\right)-\left(1+3+3^2+.............+3^{2009}\right)\)
\(\Rightarrow2B=3^{2010}-1\)
\(\Rightarrow B=\dfrac{3^{2010}-1}{2}\)
c) \(C=4+4^2+4^3+................+4^n\)
\(\Rightarrow4C=4^2+4^3+.................+4^n+4^{n+1}\)
\(\Rightarrow4C-C=\left(4^2+4^3+.............+4^n+4^{n+1}\right)-\left(4+4^2+............+4^n\right)\)
\(\Rightarrow3C=4^{n+1}-4\)
\(\Rightarrow C=\dfrac{4^{n+1}-4}{3}\)
1+2+1+2+3+1+2+3+4+1+2+3+4+5
=(1+2)x4+3x3+4x2+5
=3x4+9+8+5
=12+9+8+5
=34
a) 2-(x+3) = 1+2+3+...+99
1+2+3+...+99 → có 99 số hạng
2-(x+3) = (1+99).99 : 2
2-(x+3) = 4950
x+3 = 2 + 4950
x+3 = 4952
x = 4952 - 3
x = 4949
b) (x+1)+(x+2)+...+(x+100) = 5750
→ có 100 cặp
(x+x+x+...+x) + ( 1+2+3+...+100 ) = 5750
=> 100x + 5050 = 5750
100x = 5750 - 5050
100x = 700
x = 700 : 100
x = 7
0o0 Nguyễn Đoàn Tuyết Vy 0o0 bà kêu tui học tốt có nghĩa là học giốt đúng ko
calculator
calculator dùng đi