K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

\(a,\) Vì AO là trung tuyến ứng ch BC của tg ABC nên \(AO=OB\)

Hay tg AOB cân tại O

\(\Rightarrow\widehat{OAB}=\widehat{OBA}\Rightarrow90^0-\widehat{OAB}=90^0-\widehat{OBA}\)

\(\Rightarrow\widehat{PAB}=\widehat{PBA}\) hay tg PAB cân tại P

\(\Rightarrow AP=PB\) hay P thuộc trung trực của AB

Mà \(AO=OB\) nên O thuộc trung trực AB

Do đó OP là đg trung trực của AB

Vậy \(OP\perp AB\)

 

24 tháng 6 2021

giupspp toi zưiiii

9 tháng 2 2021

Giải thích các bước giải:

Ta có :MA=MB,MO⊥AB→MO là trung trực của AB

Tương tự NO là trung trực AC→OA=OB=OC

Mà ΔABC cân tại A→AB=AC→ΔOAB=ΔOAC(c.c.c)

→BAO^=OAC^→AO là phân giác góc A

→AH là phân giacs góc A

Kết hợp ΔABC cân tại A

9 tháng 2 2021

Ta có :MA=MB,MO⊥AB→MO là trung trực của AB

Tương tự NO là trung trực AC→OA=OB=OC

Mà ΔABC cân tại A→AB=AC→ΔOAB=ΔOAC(c.c.c)

→BAO^=OAC^→AO là phân giác góc A

→AH là phân giacs góc A

Kết hợp ΔABC cân tại A

17 tháng 4 2018

a) Xét tam giác ACK và tam giác FAM có :

AC = FA

\(\widehat{CAK}=\widehat{AFM}\)  (Cùng phụ với góc \(\widehat{FAK}\)  )

\(\widehat{ACK}=\widehat{FAM}\)   (Cùng phụ với góc \(\widehat{DAC}\)  )

\(\Rightarrow\Delta ACK=\Delta FAM\left(g-c-g\right)\)

b) Do \(\Delta ACK=\Delta FAM\left(cma\right)\Rightarrow FM=AK\)

Chứng minh hoàn toàn tương tự câu a ta có: \(\Delta ABK=\Delta EAM\left(g-c-g\right)\)

\(\Rightarrow ME=AK\)

Từ đó suy ra FM = ME hay M là trung điểm EF.

c) Kéo dài FB cắt EC tại J. Ta chứng minh \(\widehat{FJE}=90^o\)

Xét tam giác FAB và tam giác CAE có:

FA = CA

AB = AE

\(\widehat{FAB}=\widehat{CAE}\)   (Cùng phụ với góc \(\widehat{BAC}\)  )

\(\Rightarrow\Delta FAB=\Delta CAE\left(c-g-c\right)\)

\(\Rightarrow FB=CE\) và \(\widehat{AFB}=\widehat{ACE}\)

Xét tứ giác AFJE có:

\(\widehat{AFJ}+\widehat{FJE}+\widehat{JEA}+\widehat{EAF}=360^o\)

\(\Rightarrow\widehat{ACE}+\widehat{FJE}+\widehat{CEA}+\widehat{EAC}+90^o=360^o\)

\(\Rightarrow\widehat{FJE}+\widehat{ACE}+\widehat{CEA}+\widehat{EAC}=270^o\)

\(\Rightarrow\widehat{FJE}+180^o=270^o\)

\(\Rightarrow\widehat{FJE}=90^o\)

Vậy nên \(FB\perp EC\) (đpcm).

17 tháng 4 2018

Bài 2:

A B C H I M N B' C' D E

a) Gọi giao điểm của đường phân giác ^ABC và ^ACB với AC và AB lần lượt là E và D

Dễ thấy: ^BAH=^ACB (Cùng phụ với ^HAC) => 1/2. ^BAH = 1/2. ^ACB

=> ^DAM=^ACD. Mà ^DAM+^MAC=^BAC=900 => ^ACD+^MAC=900 => AM \(\perp\)CD

hay NI\(\perp\)AM. 

Tương tự ta chứng minh MI\(\perp\)AN

Xét tam giác MAN: NI\(\perp\)AM; MI\(\perp\)AN => I là trực tâm của tam giác MAN (đpcm).

b) Do I là trực tâm của tam giác AMN (cmt) => AI\(\perp\)MN hay AI\(\perp\)B'C'

Ta có: Tam giác ABC có 2 đường phân giác ^ABC và ^ACB cắt nhau tại I => AI là phân giác ^BAC

=> AI là phân giác ^B'AC'.

Xét tam giác AB'C': AI là phân giác ^B'AC'. Mà AI\(\perp\)B'C' => Tam giác AB'C' cân tại A

 Lại có: ^B'AC'=900 => Tam giác B'AC' vuông cân tại A.

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

12 tháng 10 2017

đề năm 2016-2017 à bạn 

P/s: mình học THCS Tự Lập- Mê Linh-Hà Nội

14 tháng 10 2017

Đúng rồi.Mình học THCS Kim Hoa nè :v