\(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{z+4}\)và x+y+z=17
giải theo cách áp dụng tính chất của dãy tỉ số bằng nhau nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x-2y+3z}{18-2.16+3.15}=\frac{62}{31}=2\)
=> x = 2.18 = 36
y = 2.16 = 32
z = 2.15 = 30
Vậy ...
Ta có : \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
=> \(\frac{x}{\frac{3}{2}}=\frac{2y}{\frac{8}{3}}=\frac{3z}{\frac{15}{4}}=\frac{x-2y+3z}{\frac{3}{2}-\frac{8}{3}+\frac{15}{4}}=\frac{62}{\frac{31}{12}}=24\)
=> \(\hept{\begin{cases}\frac{2x}{3}=24\\\frac{3y}{4}=24\\\frac{4z}{5}=24\end{cases}}\Leftrightarrow\hept{\begin{cases}x=36\\y=32\\z=30\end{cases}}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\) và \(x^2-y^2=-16\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{1}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{15}=\frac{x^2-y^2}{64-144}=-\frac{16}{-80}=\frac{1}{5}\)
Suy ra \(\frac{x^2}{64}=\frac{1}{5}\Rightarrow x=\frac{32}{5}\)
\(\frac{y^2}{144}=\frac{1}{5}\Rightarrow y=\frac{72}{5}\)
\(\frac{z}{15}=\frac{1}{5}\Rightarrow z=3\)
Vậy \(x=\frac{32}{5};y=\frac{72}{5};z=3\)
Chúc bạn học tốt !!!
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{6+15-7}=-1\)
\(\Rightarrow\frac{2x}{6}=-1\Rightarrow2x=-6\Rightarrow x=-3\)
\(\Rightarrow\frac{3y}{15}=-1\Rightarrow3y=-15\Rightarrow y=-5\)
\(\Rightarrow\frac{z}{7}=-1\Rightarrow z=-7\)
theo đề ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và 2x + 3y - z = -14
=> \(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}\)
Áp dụng t/c DTSBN ta có:
\(\frac{2x}{6}=\frac{3y}{15}=\frac{z}{7}=\frac{2x+3y-z}{6+15-7}=\frac{-14}{14}\) = \(-1\)
=> \(\frac{x}{3}=-1=>x=-3\)
\(\frac{y}{5}=-1=>y=-5\)
\(\frac{z}{7}=-1=>z=-7\)
t i c k nha!! 4354565475677687978873535752456465465765786876897978
Dựa theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{2x+3y+4z}{3+4+5}=\frac{2x+3y+4z}{12}\)
Rút gọn đi, ta có:
\(\frac{2x+3y+4z}{12}=\frac{x+3y+4z}{6}=\frac{x+y+4z}{2}=\frac{x+y+z}{\left(\frac{2}{4}\right)}=\frac{48}{\left(\frac{2}{4}\right)}=96\) (1)
Từ (1), ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=96\Rightarrow\hept{\begin{cases}2x=96.3\\3y=96.4\\4z=96.5\end{cases}}\Rightarrow\hept{\begin{cases}x=144\\y=128\\z=120\end{cases}}\)
Kết luận: .....
Đặt \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=k\)
\(\Rightarrow x=\frac{3}{2}k;y=\frac{4}{3}k;z=\frac{5}{4}k\)
Có: \(x+y+z=49\)
\(\Rightarrow\frac{3}{2}k+\frac{4}{3}k+\frac{5}{4}k=49\)
\(k.\left(\frac{3}{2}+\frac{4}{3}+\frac{5}{4}\right)=49\)
\(k.\frac{49}{12}=49\)
\(\Rightarrow k=12\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.12=18\\y=\frac{4}{3}.12=16\\z=\frac{5}{4}.12=15\end{cases}}\)
Vậy \(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)
Tham khảo nhé~
B1 :
\(\frac{x}{3}=\frac{y}{6}=\frac{xy}{3\times6}=\frac{162}{18}=9\)
---> x = 3.9 = 27
---> y = 6.9 = 54
B2 :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{xyz}{2\times3\times5}=\frac{-240}{30}=-8\)
---> x = -8.2 = -16
---> y = -8.3 = -24
---> z = -8.5 = -40
xin tiick
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\)
Ta có :
\(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}\)(1)
\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}\)(2)
Từ (1) và (2) ; Suy ra : \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ; ta được :
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{100}{-4}=-25\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{20}=-25\\\frac{y}{15}=-25\\\frac{z}{9}=-25\end{cases}\Rightarrow\hept{\begin{cases}x=-500\\y=-375\\z=-225\end{cases}}}\)
Vậy .................
a) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{20}{-4}=-5\)
\(\hept{\begin{cases}\frac{x}{2}=-5\\\frac{y}{3}=-5\\\frac{z}{4}=-5\end{cases}\Rightarrow\hept{\begin{cases}x=-10\\y=-15\\z=-20\end{cases}}}\)
b) Ta có: \(\frac{x}{4}=\frac{y}{6}\Leftrightarrow\frac{4x}{16}=\frac{3y}{18}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3y}{18}=\frac{4x}{16}=\frac{3y-4x}{18-16}=\frac{8}{2}=4\)
\(\hept{\begin{cases}\frac{y}{6}=4\\\frac{x}{4}=4\end{cases}\Rightarrow}\hept{\begin{cases}y=24\\x=16\end{cases}}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU,TA CÓ:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2y}{6}=\frac{3z}{18}=\frac{x+2y-3z}{2+6-18}=\frac{20}{-10}=-2\)(vì \(x+2y+3z=20\))
\(\Rightarrow\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU,TA CÓ:
\(\frac{x}{4}=\frac{y}{6}=\frac{4x}{16}=\frac{3y}{18}=\frac{3y-4x}{18-16}=\frac{8}{2}=4\)(vì 3y-4x=8)
\(\Rightarrow\hept{\begin{cases}x=16\\y=24\end{cases}}\)
\(\frac{x}{3}=\frac{y}{4}\)và \(2x+5y=10\)
\(\Rightarrow\frac{2x}{6}=\frac{5y}{20}\)và \(2x+5y=10\)
áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{5}{13}\)
\(\Rightarrow\orbr{\begin{cases}\frac{2x}{6}=\frac{5}{13}\\\frac{4y}{20}=\frac{5}{13}\end{cases}\Rightarrow\hept{\begin{cases}\frac{15}{13}\\\frac{25}{13}\end{cases}}}\)
\(KL\)
Ta có :
x + y + z = 17
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{10}{2z+4}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{10}{2z+4}=\frac{7+3+10}{\left(2x+2\right)+\left(2y-4\right)+\left(2x+4\right)}\)
\(=\frac{20}{2.\left(x+y+z+1\right)}=\frac{10}{17+1}=\frac{5}{9}\)
\(\Rightarrow\hept{\begin{cases}2x+2=7:\frac{5}{9}=\frac{63}{5}\\2y-4=3:\frac{5}{9}=\frac{27}{5}\\z+4=5:\frac{5}{9}=9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{\frac{63}{5}-2}{2}\\y=\frac{\frac{27}{5}+4}{2}\\z=9-4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{106}{5}\\y=\frac{94}{5}\\z=5\end{cases}}\)
Nhầm xíu nhé :
Bạn làm đến cái suy ra ở ngoặc nhọn thứ nhất rồi làm tiếp như sau :
.........................................
\(\Rightarrow\hept{\begin{cases}x=\frac{\frac{63}{5}-2}{2}=\frac{63}{10}\\y=\frac{\frac{27}{5}+4}{2}=\frac{47}{10}\\z=9-4=5\end{cases}}\)