K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

TÍNH : \(\left(\sqrt{2}-1\right)^2-\frac{3}{2}\sqrt{\left(-2\right)^2}+\frac{4\sqrt{2}}{5}+\sqrt{1\frac{11}{25}}.\sqrt{2}\)

\(=\left(\sqrt{2}-1\right)^2-\frac{3}{2}.2+\frac{4\sqrt{2}}{5}+\sqrt{\frac{36}{25}}.\sqrt{2}\)

\(=3-2\sqrt{2}-3+\frac{4\sqrt{2}}{5}+\frac{6\sqrt{2}}{5}=\frac{10\sqrt{2}}{5}-2\sqrt{2}=2\sqrt{2}-2\sqrt{2}=0\)

CHỨNG MINH : 

Ta có : \(\sqrt{x}\left(1-\sqrt{x}\right)=-x+\sqrt{x}=-\left[\left(\sqrt{x}\right)^2-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right]+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)với mọi \(x\ge0\)

Vậy ta có điều phải chứng minh.

13 tháng 7 2016

a) \(\left(3+1\sqrt{6}-\sqrt{33}\right)\left(\sqrt{22}+\sqrt{6}+4\right)\)

\(=\sqrt{3}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right).\sqrt{2}\left(\sqrt{11}+\sqrt{3}+2\sqrt{2}\right)\)

\(=\sqrt{6}\left(\sqrt{3}+2\sqrt{2}-\sqrt{11}\right)\left(\sqrt{3}+2\sqrt{2}+\sqrt{11}\right)\)

\(=\sqrt{6}\left[\left(\sqrt{3}+2\sqrt{2}\right)^2-11\right]=\sqrt{6}\left(11+4\sqrt{6}-11\right)=\sqrt{6}.4\sqrt{6}=6.4=24\)

b) \(\left(\frac{1}{5-2\sqrt{6}}+\frac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)=\left(\frac{5+2\sqrt{6}+10-4\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}\right)\left(15+2\sqrt{6}\right)\)

\(=\left(15-2\sqrt{6}\right)\left(15+2\sqrt{6}\right)=15^2-24=201\)

C) \(\left(\frac{4}{3}.\sqrt{3}+\sqrt{2}+\sqrt{3\frac{1}{3}}\right)\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\frac{1}{5}}\right)\)

\(=\left(\frac{4}{\sqrt{3}}+\frac{\sqrt{6}}{\sqrt{3}}+\frac{\sqrt{10}}{\sqrt{3}}\right)\left(\frac{\sqrt{6}}{\sqrt{5}}+\frac{\sqrt{10}}{\sqrt{5}}-\frac{4}{\sqrt{5}}\right)\)

\(=\frac{1}{\sqrt{15}}\left(\sqrt{6}+\sqrt{10}+4\right)\left(\sqrt{6}+\sqrt{10}-4\right)=\frac{1}{\sqrt{15}}\left[\left(\sqrt{6}+\sqrt{10}\right)^2-16\right]\)

\(=\frac{1}{\sqrt{15}}\left(16+4\sqrt{15}-16\right)=\frac{4\sqrt{15}}{\sqrt{15}}=4\)

d) \(\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1990+2\sqrt{1989}}=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{1989+2\sqrt{1989}+1}\)

\(=\sqrt{\left(1-\sqrt{1989}\right)^2}.\sqrt{\left(\sqrt{1989}+1\right)^2}=\left(\sqrt{1989}-1\right)\left(\sqrt{1989}+1\right)=1989-1=1988\)

e) \(\frac{a-\sqrt{ab}+b}{a\sqrt{a}+b\sqrt{b}}-\frac{1}{a-b}=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}-\frac{1}{a-b}=\frac{\sqrt{a}-\sqrt{b}-1}{a-b}\)

13 tháng 7 2016

a) \(\left(\sqrt{ab}+2\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}+\frac{1}{\sqrt{ab}}\right).\sqrt{ab}\) (ĐK : \(\hept{\begin{cases}a>0\\b>0\end{cases}}\)hoặc \(\hept{\begin{cases}a< 0\\b< 0\end{cases}}\))

\(=ab+2b-a+1\)

b) \(\left(-\frac{am}{b}\sqrt{\frac{n}{m}}-\frac{ab}{n}.\sqrt{mn}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\) (ĐK bạn tự xét nhé ^^)

\(=\left(-\frac{a\sqrt{mn}}{b}-\frac{ab\sqrt{m}}{\sqrt{n}}+\frac{a^2}{b^2}.\sqrt{\frac{m}{n}}\right)\left(a^2b^2.\sqrt{\frac{n}{m}}\right)\)

\(=a^2b^2\left(\frac{-an}{b}-ab+\frac{a^2}{b^2}\right)=-a^3bn-a^3b^3+a^4=a^3\left(a-bn-b^3\right)\)

6 tháng 2 2017

1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~

\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)

6 tháng 2 2017

Mấy bài kia sao cái phương trình dài thê,s giải sao nổi

20 tháng 1 2017

lm jup mk di m.n