cho a^2018+b^2018+c^2018=a^1009b^1009+b^1009c^1009+c^1009a^1009
tính A=(a-b)^2019+(b-c)^2020+(c-a)^2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{2017.2021-4031}{2020+2017.2018}\)
= \(\dfrac{2017\left(2018+3\right)-4031}{2020+2017.2018}\)
= \(\dfrac{2017.2018+2017.3-4031}{2020+2017.2018}\)
= \(\dfrac{2017.2018+2020}{2020+2017.2018}\)
= 1
@Nguyen Thi Ngoc Linh
Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Rightarrow a^{2018}+b^{2018}+c^{2018}\ge\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)
Dấu = xảy ra \(\Leftrightarrow a=b=c\)
Mà đẳng thức trên xảy ra dấu =
\(\Leftrightarrow a=b=c\Leftrightarrow P=0\)
Bài kia tí nghĩ nốt, khó v
Sửa đề em nhé: \(\frac{2}{ab}-\frac{1}{c^2}=4\) và tính \(a+b+2c\)
Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ca}+4=4\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-c\\b=-c\end{cases}}\)\(\Leftrightarrow a+b+2c=0\)
\(a,=\left(\frac{9}{16}-\frac{10}{16}+\frac{12}{16}\right):\frac{11}{32}\)
\(=\frac{11}{16}:\frac{11}{32}\)
\(=\frac{11}{16}.\frac{32}{11}\)
\(=2\)
Ta có a^2018 + b^2018 +c^2108 = a^1009b^1009 + b^1009c^1009 +c^1009a^1009
=> a^2018 + b^2018 +c^2018 -a^1009b^1009 -b^1009c^1009 -c^1009a^1009 =0
=> 2( a^2018 +b^2108 +c^2018 -a^1009b^1009 -b^1009c^1009 -c^1009a^1009) =0
=> [(a^1009)^2 -2a^1009b^1009 +(b^1009)^2] + [(b^1009)^2 -2b^1009c^1009 +(c^1009)^2] +[(c^1009)^2 -2c^1009a^1009 +(c^1009)^2] =0
=> (a^1009 -b^1009)^2 + (b^1009 -c^1009)^2 + (c^1009 -a^1009)^2 =0
Vì (a^1009 -b^1009)^2 , (b^1009-c^1009)^2 , (c^1009- a^1009)^2 >_0 ( với mọi a,b,c)
=> a^1009 -b^1009 =0 , b^1009-c^1009 =0 , c^1009-a^1009 =0
=> a=b=c=0
Thay vào A : A=0
Vậy A=0