K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2018

Đặt:

\(a=\sqrt[3]{x^2-x-8};b=\sqrt[3]{x^2-8x-1}\)

Để ý thấy rằng: \(a^3-b^3=7x-7=\left(7x+1\right)+8\)nên PT trở thành:

\(b-a+\sqrt[3]{a^3-b^3+8}=2\)

\(\Leftrightarrow a^3-b^3+8=\left(2+a-b\right)^3\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=\left(a-b\right)^3+6\left(a-b\right)\left[2+\left(a-b\right)\right]\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a-b\right)^2+3ab=\left(a-b\right)^2+12+6\left(a-b\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+2\right)\left(2-b\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a=-2\\b=2\end{cases}}\)

\(\left(+\right)a=b\Leftrightarrow x^2-x-8=x^2-8x-1\Leftrightarrow x=1\)

\(\left(+\right)a=-2\Leftrightarrow x^2-x-8=-8\Leftrightarrow\orbr{\begin{cases}a=0\\x=1\end{cases}}\)

\(\left(+\right)b=2\Leftrightarrow x^2-8x-1=8\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)

\(\Rightarrow x\in\left\{\pm1;0;9\right\}\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \)

\(\begin{array}{l} \Rightarrow {x^2} - 7x =  - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{5}\) và \(x = \frac{1}{2}\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x =  - \frac{3}{5}\) thỏa mãn phương trình

Vậy nghiệm của phương trình là \(x =  - \frac{3}{5}\)

b) \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\)

\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8}  = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)

Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)

c) \(\sqrt {4{x^2} + x - 1}  = x + 1\)

\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)

\( \Rightarrow x =  - \frac{2}{3}\) và \(x = 1\)

Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1}  = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn

Vậy nghiệm của phương trình trên là \(x =  - \frac{2}{3}\) và \(x = 1\)

d) \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \)

\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{2}\) và \(x = 7\)

Thay hai nghiệm \(x =  - \frac{3}{2}\) và \(x = 7\) vào phương trình  \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình

Vậy phương trình \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) vô nghiệm

19 tháng 5 2018

Các bạn học sinh ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math không thể áp dụng các biện pháp như trừ điểm, thậm chí mở vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần

1 tháng 8 2020

bình phương 2 vế ?

a, \(\sqrt{x-2}+\sqrt{x-3}=5\left(ĐK:x\ge3\right)\)

\(< =>x+\sqrt{\left(x-2\right)\left(x-3\right)}=15\)

\(< =>\left(x-2\right)\left(x-3\right)=\left(15-x\right)\left(15-x\right)\)

\(< =>x^2-5x+6=x^2-30x+225\)

\(< =>25x-219=0\)

\(< =>x=\frac{219}{25}\)

a:

ĐKXĐ: \(x>=-2\)

\(1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)

=>\(1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)

 

Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)(ĐK: a>0 và b>0)

Phương trình sẽ trở thành:

1+ab=a+b

=>ab-a-b+1=0

=>a(b-1)-(b-1)=0

=>(b-1)(a-1)=0

=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)

=>\(\left\{{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\)

=>\(x\in\varnothing\)

b: \(\sqrt{4x^2-2x+\dfrac{1}{4}}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x-\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\left|2x-\dfrac{1}{2}\right|=4x^3-x^2+8x-2\)(1)

TH1: x>=1/4

\(\left(1\right)\Leftrightarrow4x^3-x^2+8x-2=2x-\dfrac{1}{2}\)

=>\(4x^3-x^2+6x-\dfrac{3}{2}=0\)

=>\(x^2\left(4x-1\right)+1,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\left(x^2+1,5\right)=0\)

=>4x-1=0

=>x=1/4(nhận)

TH2: x<1/4

Phương trình (1) sẽ trở thành:

\(4x^3-x^2+8x-2=-2x+\dfrac{1}{2}\)

=>\(x^2\left(4x-1\right)+2\left(4x-1\right)+0,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\cdot\left(x^2+2,5\right)=0\)

=>4x-1=0

=>x=1/4(loại)

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Câu a)

Đặt \(\left\{\begin{matrix} \sqrt[3]{1-x}=a\\ \sqrt{x+2}=b\end{matrix}\right.\). Khi đó ta thu được hệ sau:

\(\left\{\begin{matrix} a+b=1\\ a^3+b^2=3\end{matrix}\right.\)\(\Rightarrow \left\{\begin{matrix} b=1-a\\ a^3+b^2=3\end{matrix}\right.\)

\(\Rightarrow a^3+(1-a)^2=3\)

\(\Rightarrow a^3+a^2-2a-2=0\)

\(\Leftrightarrow a^2(a+1)-2(a+1)=0\Leftrightarrow (a+1)(a^2-2)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=\pm \sqrt{2}\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=2\\ x=1-\sqrt{8}\\ x=1+\sqrt{8}\end{matrix}\right.\)

Thử lại thấy $x=2$ và $x=1+\sqrt{8}$ thỏa mãn.

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Câu b)

Đặt \(\left\{\begin{matrix} \sqrt[3]{x^2-x-8}=a\\ \sqrt[3]{x^2-8x-1}=b\end{matrix}\right.\Rightarrow a^3-b^3=7x-7\)

PT trở thành:

\(\sqrt[3]{a^3-b^3+8}-a+b=2\)

\(\Rightarrow \sqrt[3]{a^3-b^3+8}=a-b+2\)

\(\Rightarrow a^3-b^3+8=(a-b+2)^3=a^3-b^3+8+3(a-b)(a+2)(-b+2)\)

(áp dụng công thức \((a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)\) )

\(\Rightarrow (a-b)(a+2)(-b+2)=0\Rightarrow \left[\begin{matrix} a=b\\ a=-2\\ b=2\end{matrix}\right.\)

Nếu \(a=b\Rightarrow x^2-x-8=x^2-8x-1\Rightarrow 7x-7=0\Rightarrow x=1\)

Nếu \(a=-2\Rightarrow x^2-x-8=-8\Rightarrow x^2-x=0\Rightarrow x=0; x=1\)

Nếu $b=2$ thì \(x^2-8x-1=8\Rightarrow x^2-8x-9=0\Rightarrow x=9; x=-1\)

Thử lại.............