K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn vào link này nè:https://olm.vn/hoi-dap/detail/55490238293.html?pos=83878663774

6 tháng 8 2016

Ta có:
A=1/3 - 2/3^2+3/3^3 - 4/3^4+ ... - 100/3^100
=>3A=1 -2/3 +3/3^2 - 4/3^3+ ... - 100/3^99
=>4A=A+3A=1-1/3+1/3^2-1/3^3+...-1/3^99 - 100/3^100
=>12A=3.4A=3-1+1/3-1/3^2+...-1/3^98 - 100/3^99

=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1...
<=>16A=3-101/3^99-100/3^100
<=>A=3/16-(101/3^99+100/3^100)/16 < 3/16
Suy ra A<3/16

7 tháng 4 2017

ai tk mình đi đang bị âm điểm nè

cảm ơn các bạn nhìu!!!

8 tháng 6 2016

1/2!= 1- 1/2 
1/3! = 1/2.3= 1/2 - 1/3 
1/4! = 1/2.3.4< 1/3.4 =1/3 -1/4 
.... 
1/100! = 1/...99.100 <1/99-1/100 
cộng vế với vế ta được điều phải chứng minh

5 tháng 10 2016

M = 1.2.3 + 2.3.4 + 3.4.5 + ... + 99.100.101

4M = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 99.100.101.(102-98)

4M = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 99.100.101.102 - 98.99.100.101

4M = (1.2.3.4 + 2.3.4.5 + 3.4.5.6 + ... + 99.100.101.102) - (0.1.2.3 + 1.2.3.4 + 2.3.4.5 + ... + 98.99.100.101)

4M = 99.100.101.102 - 0.1.2.3

4M = 99.100.101.102 - 0

4M = 99.100.101.102

M = 99.25.101.102

M = 25497450

13 tháng 9 2020

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...-\frac{100}{3^{100}}\)

\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow3A+A=1+\left(\frac{1}{3}-\frac{2}{3}\right)+\left(\frac{-2}{3^2}+\frac{3}{3^2}\right)+\left(\frac{3}{3^3}-\frac{4}{3^3}\right)+...+\left(\frac{-98}{3^{98}}+\frac{99}{3^{98}}\right)+\left(\frac{99}{3^{99}}-\frac{100}{3^{99}}\right)-\frac{100}{3^{100}}\)

\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow3.4A=3-1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow3.4A+4A=3+\left(1-1\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^{98}}-\frac{1}{3^{98}}\right)-\frac{101}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow16A=3-\frac{99}{3^{99}}-\frac{100}{3^{100}}< 3\Rightarrow A< \frac{3}{16}< \frac{3}{4}\)