Tìm nghiệm nguyên của phương trình x2y+2y+5=3x+xy
Giúp mk nhanh với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT $\Leftrightarrow x^3+3x-5=x^2y+2y=y(x^2+2)$
$\Rightarrow y=\frac{x^3+3x-5}{x^2+2}$
Để $y$ nguyên thì $x^3+3x-5\vdots x^2+2$
$\Leftrightarrow x(x^2+2)+x-5\vdots x^2+2$
$\Leftrightarrow x-5\vdots x^2+2(1)$
$\Rightarrow x^2-5x\vdots x^2+2$
$\Leftrightarrow x^2+2-(5x+2)\vdots x^2+2$
$\Leftrightarrow 5x+2\vdots x^2+2(2)$
Từ $(1);(2)\Rightarrow 5(x-5)-(5x+2)\vdots x^2+2$
$\Leftrightarrow 27\vdots x^2+2$. Do $x^2+2\geq 2$ nên:
$\Rightarrow x^2+2\in\left\{3;9;27\right\}$
$\Rightarrow x^2\in\left\{1;7;25\right\}$
Do $x$ nguyên nên $x\in\left\{\pm 1; \pm 5\right\}$
Thay vào $y$ ta tìm được:
$x=-1\Rightarrow y=-3$
$x=5\Rightarrow y=5$
Ta có 3x – 2y = 5 ⇒ y = 3 x − 5 2 = 2 x + x − 5 2 = 2 x 2 + x − 5 2 = x + x − 5 2
Hay y = x + x − 5 2
Đặt x − 5 2 = t t ∈ ℤ ⇒ x = 2t + 5
⇒ y = 2t + 5 + t ⇔ y = 3t + 5 ⇒ x = 5 + 2 t y = 5 + 3 t t ∈ ℤ
Đáp án: D
http://pitago.vn/question/tim-nghiem-nguyen-cua-phuong-trinh-saua-3x-2y-6b11x18y-1-52912.html
bạn vào đây xem nhé!
Hoc tốt!!!!!!!!!!!
Bài 1:
3x+2y=7
\(\Leftrightarrow3x=7-2y\)
\(\Leftrightarrow x=\dfrac{7-2y}{3}\)
Vậy: \(\left\{{}\begin{matrix}y\in R\\x=\dfrac{7-2y}{3}\end{matrix}\right.\)
Thiên bình có 102 thứ (1) lớp 8 chưa biết delta
<=> \(\left(x^2+2\right)y=x^2+3x-5\\ \)
\(\Leftrightarrow y=\frac{x^2+3x-5}{x^2+2}=1+\frac{3x-7}{x^2+2}\)
\(y\in Z\Leftrightarrow\frac{3x-7}{x^2+2}\in Z\) \(\Leftrightarrow\left|3x-7\right|\ge x^2+2\)=> \(-4\le x\le1\)
vô nghiệm
<>x^2(x-y)+2(x-y)+x-5=0(1*)
Denta theox
1-4(x-y)[2(x-y)-5]>=0
<>-8(x-y)^2+20(x-y)+1>=0
<>[-10+V(108)]/-8=<(x-y)=<
[10+V(108)]/8
Vì x-y nguyên nên =>
0=<(x-y)=<2
Vậy để ptr có no nguyên
điều kiện cần là
x-y=0 or x-y=1,x-y=2
Đk đủ:bạn thay lần lượt
các giá trị của x-y ở trên vào 1*
nếu tìm đc x nguyên thì kết luận!
Chúc bạn học tốt
(V(108) là cb2 của 108)