Giải phương trình
\(\frac{16}{\sqrt{x-1996}}+\frac{1}{\sqrt{x-1996}}=10-\left(\sqrt{x-1996}+\sqrt{y-2008}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hướng dẫn thôi nhé
Có: \(\left(\frac{16}{\sqrt{x-1996}}+\sqrt{x-1996}\right)+\left(\frac{1}{\sqrt{y-2008}}+\sqrt{y-2008}\right)\)
\(\ge2\sqrt{\frac{16}{\sqrt{x-1996}}\sqrt{x-1996}}+2\sqrt{\frac{1}{\sqrt{y-2008}}\sqrt{y-2008}}=8+2=10\)
\(\Leftrightarrow\)\(\frac{16}{\sqrt{x-1996}}+\frac{1}{\sqrt{y-2008}}\ge10-\left(\sqrt{x-1996}+\sqrt{y-2008}\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{16}{\sqrt{x-1996}}=\sqrt{x-1996}\\\frac{1}{\sqrt{y-2008}}=\sqrt{y-2008}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2012\\y=2009\end{cases}}\)
= có x +y+z=a=>x2+y2+z2+2(xy+yz+xz)=a2
Thay vào a2=b+3992=>xy+zy+xz=1996
thay vào P ta có
P=x\(\sqrt{\dfrac{\left(xy+yz+zx+z^2\right)\left(zx+xy+yz+x^2\right)}{xy+yz+zx+x^2}}\)
+y\(\sqrt{\dfrac{\left(zx+zy+xy+z^2\right)\left(zx+zy+xy+x^2\right)}{xy+yz+xz+y^2}}\)
+\(\sqrt{\dfrac{\left(zx+xy+zy+x^2\right)\left(xz+xy+zy+y^2\right)}{xz+xy+zy+z^2}}\)
=x\(\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}}\)
+y\(\sqrt{\dfrac{\left(x+z\right)\left(z+y\right)\left(x+y\right)\left(z+x\right)}{\left(y+z\right)\left(x+y\right)}}\)
+z\(\sqrt{\dfrac{\left(y+z\right)\left(x+y\right)\left(z+x\right)\left(x+y\right)}{\left(z+x\right)\left(z+y\right)}}\)
=x\(\sqrt{\left(y+z\right)^2}\)+y\(\sqrt{\left(x+z\right)^2}\)+z\(\sqrt{\left(x+y\right)^2}\)=x(z+y)+y(x+z)+z(x+y)
=2(xy+zx+zy)=3992
*có gì ko hiểu thì hỏi
b) đk: \(x>2012;y>2013\)
pt \(\frac{16}{\sqrt{x-2012}}+\sqrt{x-2012}+\frac{1}{\sqrt{y-2013}}+\sqrt{y-2013}=10\)
\(VT\ge2\sqrt{\frac{16}{\sqrt{x-2012}}.\sqrt{x-2012}}+2\sqrt{\frac{1}{\sqrt{y-2013}}.\sqrt{y-2013}}=8+2=10\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-2012=16\\y-2013=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2028\\y=2014\end{cases}}\)
\(x-2008=X;y-2009=Y;z-2010=Z\)
\(\sqrt{X}+\sqrt{Y}+\sqrt{Z}+3012=\frac{1}{2}\left(X+Y+Z+2008+2009+2010\right)\)
\(2.\sqrt{X}+2\sqrt{Y}+2\sqrt{Z}+2.3012=X+Y+Z+2009\cdot3\)
\(\left(X-2\sqrt{X}+1\right)+\left(Y-2\sqrt{Y}+1\right)+\left(Z-2\sqrt{Z}+1\right)+3.2008=2.3012\)
\(\left(\sqrt{X}-1\right)^2+\left(\sqrt{Y}-1\right)^2+\left(\sqrt{Z}-1\right)^2=2.3012-3.2008=0\)
\(X=1;Y=1;Z=1\Rightarrow x=2009;y=2010;z=2011\)