a)cho a+b+c=2015. và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\)tính A=\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
b) cho \(\frac{a}{b}=\frac{c}{d}\). CMR \(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2c^2-3cd+3d^2}{2c^2+3cd}\)
giúp mình với mình tick cho
a) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\)
\(\Leftrightarrow\frac{2015}{a+b}+\frac{2015}{b+c}+\frac{2015}{c+a}=403\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=403\)
\(\Leftrightarrow3+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=403\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=400\)
b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)
Thay vào rồi c/m nhé