K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

a, Ta có: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)<0

Vì (2a+1)2 >=0;(b+3)^4>=0;(5c-6)2 >=0

\(\Rightarrow\)Không tìm được a,b,c

11 tháng 8 2018

a) Vì \(\left(2a+1\right)^2\ge0\left(\forall a\right)\)

        \(\left(b+3\right)^4\ge0\left(\forall b\right)\)

        \(\left(5c-6\right)^2\ge0\left(\forall c\right)\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\ge0\)

Mà ở đây, đề bài bảo: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\le0\)

=> Vô lí

=> Phương trình vô nghiệm

b;c Tương tự

1 tháng 8 2018

ta có : \(4a-3b⋮19\Leftrightarrow20a-15b⋮19\Leftrightarrow4\left(5a+b\right)-19b⋮19\)

\(\Rightarrow5a+b⋮19\left(đpcm\right)\)

bài còn lại lm tương tự nha

1 tháng 8 2018

2. \(4a+3b⋮13\Leftrightarrow7\left(4a+3b\right)⋮13\Leftrightarrow28a+21b⋮13\Leftrightarrow28a+21b-13b⋮13\Leftrightarrow28a+8b⋮13\Leftrightarrow4\left(7a+2b\right)⋮13\Leftrightarrow7a+2b⋮13\)

Vậy \(4a+3b⋮13\Leftrightarrow7a+2b⋮13\)

Ta có A<1/1.2+1/2.3+1/3.4+....+1/19.20

A<1-1/2=1/2-1/3+..+1/19-1/20

A<1-1/20=19/20

Ta có 19/20<19/22(so sánh 2 phân số cùng tử)=>A<19/22  (1)

Ta có A>1/2.3+1/3.4+...+1/20.21

A>1/2-1/3+1/3-1/4+........+1/20-1/21

A>1/2-1/21=20/42

Ta có 20/42>19/42(so sánh 2 phân số cùng mẫu)=>A>19/42  (2)

Từ (1) và (2) =>19/42<A<19/22