K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2023

3.1 

Xét hiệu :

\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)

\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)

Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)

Dấu bằng xảy ra : \(\Leftrightarrow a=b\)

3.2

Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:

\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)

Mà : \(a+b+c=1\left(gt\right)\)

nên : \(1\ge4a\left(b+c\right)\)

\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )

Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)

\(\Rightarrow b+c\ge16abc\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)

12 tháng 5 2017

Bộ NST lưỡng bội là 2n.

Khi không xảy ra trao đổi chéo, số loại tinh trùng = 2n = 256 => n = 8.

Cặp NST trao đổi chéo tại 1 điểm => 4 loại tinh trùng.

Cặp NST trao đổi chéo tại 2 điểm không đồng thời => 6 loại tinh trùng

=> Số loại tinh trùng: 4 x 62 x 25 = 4608.

Chọn C.

10 tháng 3 2016

gọi xy=k^2 với k là hằng số.

Ta có: [(x+y)/2]^2 >=xy <=>(x+y)^2 >= 4xy <=> (x+y) >= 2k =>min(x+y)=2k<=>x=y=k.

10 tháng 3 2016

a)Xét hai số dương tích bằng a( với a là hằng số):

ta có (x+y)^2 >= 4xy=4a <=> x=y

Vì x,y >0 nên x+y nhỏ nhất <=> x=y.

27 tháng 1 2021

+Gọi 2 số đó là a, b \(\left(a,b>0\right)\)

+Có: a, b ko đổi 

+Cần cm: \(\left(a+b\right)_{min}\Leftrightarrow a=b\)

+Có: \(\left(a-b\right)^2\ge0\\ \Rightarrow a^2-2ab+b^2\ge0\\ \Rightarrow a^2+b^2\ge2ab\\ \Rightarrow a^2+2ab+b^2\ge4ab\\ \Rightarrow\left(a+b\right)^2\ge4ab\\ \Rightarrow a+b\ge2\sqrt{ab}\)

Có: \(\left(a+b\right)_{min}=2\sqrt{ab}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\a+b=2\sqrt{ab}\end{matrix}\right.\)

\(\Leftrightarrow a=b=\sqrt{ab}\left(đpcm\right)\)

19 tháng 4 2018

19 tháng 11 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu a ≥ 0, b  ≥  0, c  ≥  0 thì :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

20 tháng 7 2018

Chọn C

I đúng, vì 2 gen này được nhân đôi khi NST nhân đôi

II sai, phiên mã dựa vào nhu cầu của tế bào với sản phầm của 2 gen đó

III đúng

IV đúng