K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

(BAN TU VE HINH NHA)                                                                                                                                                                                                                                Xet tam giac AED va tam giac ABC co:                                                                                                                                                                         AE=AB   (gt)                                                                                                                                                                                                         goc EAD=goc BAC   (2goc doi dinh)                                                                                                                                                                AD=AC   (gt)                                                                                                                                                                                                 =>tam giac AED= tam giac ABC                                                                                                                                                                        =>gocD=gocC                                                                                                                                                                       ma 2goc o vi tri so le trong    =>ED//BC  =>BCDE la hinh thanh (dpcm)

26 tháng 4 2017

a, Vì AE=2AB

=>AE/AB=1/2

suy ra: A là trọng tâm của tam giác CDE

b,Gọi F là trung điểm của DE

=>CF là trung tuyến của tam giác CDE

mà A là trọng tâm của tam giác CDE

suy ra:C;A;F thẳng hàng

=>CA đi qua trung điểm của DE

=>đpcm

a) Chứng minh ΔABC=ΔAFE

Xét ΔABC và ΔAFE có

AB=AF(gt)

\(\widehat{BAC}=\widehat{FAE}\)(hai góc đối đỉnh)

AC=AE(gt)

Do đó: ΔABC=ΔAFE(c-g-c)

b) Chứng minh ΔABM=ΔAFN

Ta có: ΔABC=ΔAFE(cmt)

\(\widehat{B}=\widehat{F}\)(hai góc tương ứng)

Ta có: ΔABC=ΔAFE(cmt)

⇒BC=FE(hai cạnh tương ứng)

\(BM=CM=\frac{BC}{2}\)(M là trung điểm của BC)

\(FN=EN=\frac{FE}{2}\)(N là trung điểm của FE)

nên BM=CM=FN=EN

Xét ΔABM và ΔAFN có

BM=FN(cmt)

\(\widehat{B}=\widehat{F}\)(cmt)

AB=AF(gt)

Do đó: ΔABM=ΔAFN(c-g-c)

20 tháng 3 2020
https://i.imgur.com/zZxqSjh.jpg