bài 1 Giairt phương trinh \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lag tí -.-'
`ĐK:2<=x<=6`
BP 2 vế ta có:
`x-2+6-x+2\sqrt{(x-2)(6-x)}=x^2-8x+24`
`<=>4+2\sqrt{(x-2)(6-x)}=x^2-8x+24`
`<=>2\sqrt{(x-2)(6-x)}=x^2-8x+20`
`<=>2sqrt{-x^2+8x-12}=x^2-8x+20`
`<=>-x^2+8x-20+2sqrt{-x^2+8x-12}=0`
`<=>-x^2+8x-12+2sqrt{-x^2+8x-12}-8=0`
Đặt `sqrt{-x^2+8x-12}=a(a>=0)`
`pt<=>a^2+2a-8=0`
`<=>a=2(tm),a=-4(l)`
`<=>-x^2+8x-12=4`
`<=>x^2-8x+16=0`
`<=>(x-4)^2=0<=>x=4(tmđk)`
Vậy `S={4}`
\(\sqrt{x-2}+\sqrt{6-x}\text{=}\sqrt{x^2-8x+24}\)
\(ĐKXĐ:2\le x\le6\)
Xét VP của pt ta thấy : \(\sqrt{x^2-8x+24}\text{=}\sqrt{x^2-8x+16+8}\)
\(\text{=}\sqrt{\left(x-4\right)^2+8}\)
\(\Rightarrow VP\ge\sqrt{8}\)
Xét VT của pt ta có :
\(VT^2\text{=}x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
\(VT^2\text{=}4+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
Áp dụng BĐT cô si cho 2 số không âm ta có :
\(2\sqrt{\left(x-2\right)\left(6-x\right)}\le\left(\sqrt{x-2}\right)^2+\left(\sqrt{6-x}\right)^2\)
\(\text{=}x-2+6-x\text{=}4\)
\(\Rightarrow VT^2\le8\)
\(\Rightarrow VT\le\sqrt{8}\)
Để \(VT\text{=}VP\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4\text{=}0\\\sqrt{x-2}\text{=}\sqrt{6-x}\end{matrix}\right.\)
\(\Leftrightarrow x=4\left(TM\right)\)
Vậy...........
ĐKXĐ: \(2\le x\le6\)
\(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\\ \Leftrightarrow\left(\sqrt{x-2}+\sqrt{6-x}\right)^2=\left(\sqrt{x^2-8x+24}\right)^2\\ \Leftrightarrow x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\\ \Leftrightarrow4+2\sqrt{-x^2+8x-12}=x^2-8x+24\\ \Leftrightarrow-x^2+8x-20+2\sqrt{-x^2+8x-12}=0\left(1\right)\)
Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\), ta có:
\(\left(1\right)\Leftrightarrow a^2+2a-8=0\Leftrightarrow\left[{}\begin{matrix}a=2\left(tm\right)\\a=-4\left(ktm\right)\end{matrix}\right.\)
Ta có:
\(\sqrt{-x^2+8x-12}=2\Leftrightarrow-x^2+8x-12=4\\ \Leftrightarrow-x^2+8x-16=0\\ \Leftrightarrow x^2-8x+16=0\\ \Leftrightarrow\left(x-4\right)^2=0\\ \Leftrightarrow x=4\left(tm\right)\)
Vậy....
P.s: Có gì sai mong mọi người góp ý!
#Lemon
ĐK:....
\(pt\Leftrightarrow x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
\(\Leftrightarrow4+2\sqrt{-x^2+8x-12}=x^2-8x+24\)
\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)
Đặt \(x^2-8x=a\)
\(pt\Leftrightarrow2\sqrt{-a-12}=a+20\)
\(\Leftrightarrow4\left(-a-12\right)=\left(a+20\right)^2\)
\(\Leftrightarrow a^2+40a+400+4a+48=0\)
\(\Leftrightarrow a^2+44a+448=0\)
\(\Leftrightarrow\left(a+16\right)\left(a+28\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-16\\a=-28\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-8x+16=0\\x^2-8x+28=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-4\right)^2=0\\\left(x-4\right)^2+12=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\varnothing\end{matrix}\right.\)
Vậy phương trình có nghiệm duy nhất \(x=4\)
Áp dụng bđt Bunhia,ta có VT^2<=2(x-2+6-x)=8
suy ra VT<=\(2\sqrt{2}\)
Dấu "=" xảy ra khi \(\sqrt{x-2}=\sqrt{6-x}\) <=> x-2=6-x <=>x=4
Mặc khác \(\sqrt{x^2-8x+24}=\sqrt{\left(x-4\right)^2+8}>=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left(x-4\right)^2\)=0 <=> x=4
Vậy pt đã cho có 1 nghiệm duy nhất là x=4
a) \(\sqrt{4+2x-x^2}=x-2\)
\(\Leftrightarrow\left(\sqrt{4+2x-x^2}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow4+2x-x^2=x^2-4x+4\)
\(\Leftrightarrow-x^2+6x=0\)
\(\Leftrightarrow x\left(6-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\6-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
hình như bài này sai đó! em mới học lớp 8 thôi !
lê thị thu huyền:
sai rồi đó em, nhưng mà nhờ em chị mới biết chị sai chỗ nào. Không hiểu đầu óc kiểu gì mà lại thấy 2x+4x=8x mới chết chứ !!!
Em làm bừa thôi, mới học dạng này .
ĐK: \(1\le x\le7\)
Đặt \(\sqrt{6}\ge a=\sqrt{7-x}\ge0;\sqrt{6}\ge b=\sqrt{x-1}\ge0\)
PT<=>\(b^2+2a=2b+ab\left(1\right)\)
(1) \(\Leftrightarrow\left(a-b\right)\left(2-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\b=2\end{cases}}\). Nếu a = b thì \(\sqrt{7-x}=\sqrt{x-1}\Leftrightarrow7-x=x-1\Leftrightarrow x=4\) (TM)
Nếu b = 2 thì \(\sqrt{x-1}=2\Leftrightarrow x=5\left(TM\right)\)
Vậy...
a) ĐK: \(x\ge3\)
PT \(\Leftrightarrow\sqrt{\left(x-3\right)\left(x-2\right)}-\sqrt{x-2}+\sqrt{x+1}-\sqrt{\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-3}-1\right)+\sqrt{x+1}\left(1-\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+1}\right)\left(\sqrt{x-3}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+1}\\\sqrt{x-3}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=x+1\\x-3=1\end{matrix}\right.\) \(\Leftrightarrow x=4\) (Thỏa mãn)
Vậy ...
ĐKXĐ: \(2\le x\le7\)
Áp dụng BĐT Bunhia cho vế trái:
\(\sqrt{x-2}+\sqrt{6-x}\le\sqrt{\left(1+1\right)\left(x-2+6-x\right)}=\sqrt{8}\)
\(\Rightarrow VT\le\sqrt{8}\)
\(VP=\sqrt{x^2-8x+16+8}=\sqrt{\left(x-4\right)^2+8}\ge\sqrt{8}\)
\(\Rightarrow VP\ge VT\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x-4=0\\x-2=6-x\end{matrix}\right.\) \(\Rightarrow x=4\)