K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

Gọi D là đỉnh thức tư của hình bình hành ABDC. Khi đó, O, M, D thẳng hàng.

Do giả thiết nên DB//MP, DC//MN. Từ đó, do O, M, D thẳng hàng, nên góc PMO = góc OMN <=> OM là phân giác góc PMN <=> DM là phân giác góc BDC

\(\Leftrightarrow\frac{MB}{MC}=\frac{DB}{DC}\)

Nhưng tứ  giác ABDC là một hình bình hành nên BD = AC, CD = AB

do đó : \(\frac{DB}{DC}=\frac{AC}{AB}\)

Vì vậy :

góc PMO bằng góc OMN   \(\Leftrightarrow\frac{MB}{MC}=\frac{AC}{AB}\)

Vậy với M là điểm trên cạnh BC sao cho \(\frac{MB}{MC}=\frac{AC}{AB}\)  (hay M đối xứng với chân phân giác trong góc BAC qua trung điểm cạnh BC) thì góc PMO bằng góc OMN => Điều cần chứng minh

 

19 tháng 3 2016

O A P B N C D M

31 tháng 5 2019

18 tháng 4 2017

a hí hí giống mk quá

27 tháng 11 2023

a: Xét ΔNPC có I,K lần lượt là trung điểm của NP,NC

=>IKlà đường trung bình của ΔNPC

=>IK//PC và IK=PC/2

IK//PC

\(J\in PC\)

Do đó: IK//JP

IK=PC/2

PC=PB

\(JP=\dfrac{BP}{2}\)

Do đó: IK=JP

Xét tứ giác IKPJ có

IK//PJ

IK=PJ

Do đó: IKPJ là hình bình hành

b: Xét ΔACN có

K,Q lần lượt là trung điểm của CN,CA

=>KQ là đường trung bình của ΔACN

=>KQ//AN và \(KQ=\dfrac{AN}{2}\)

Xét ΔPNB có

I,J lần lượt là trung điểm của PN,PB

=>IJ là đường trung bình của ΔPNB

=>IJ//NB và \(JI=\dfrac{NB}{2}\)

JI//NB

KQ//AN

A,N,B thẳng hàng

Do đó: JI//KQ

\(JI=\dfrac{BN}{2}\)

\(KQ=\dfrac{AN}{2}\)

mà BN=AN

nên JI=KQ

Xét tứ giác QKJI có

QK//JI

QK=JI

Do đó: QKJI là hình bình hành

c: KQ//AN

N\(\in\)AB

Do đó: KQ//AB

KP//AB

KQ//AB

KQ,KP có điểm chung là K

Do đó: Q,K,P thẳng hàng

\(QK=\dfrac{AN}{2}\)

\(PK=\dfrac{BN}{2}\)

mà AN=BN

nên QK=PK

mà Q,K,P thẳng hàng

nên K là trung điểm của PQ

19 tháng 3 2016

A B C D M N P O b c

19 tháng 3 2016

Đặt \(\overrightarrow{AB}=\overrightarrow{b}\)\(\overrightarrow{AC}=\overrightarrow{c}\) 

Do B. M, C thẳng hàng theo thứ tự, nên tồn tại n, p > 0 sao cho \(\overrightarrow{AM}=n\overrightarrow{c}+p\overrightarrow{b}\) với \(n+p=1\)

Từ đó, do tứ giác ANMP là hình bình hành, nên \(\overrightarrow{AP}=p\overrightarrow{b}\)\(\overrightarrow{AN}=n\overrightarrow{c}\)

Do B, O, N thẳng hàng và C, O, P thẳng hàng nên 

\(\overrightarrow{AO}=x\overrightarrow{b}+ny\overrightarrow{c}=z\overrightarrow{c}+pt\overrightarrow{b}\)

trong đó \(x+y=1=z+t\)

Từ đó, do hai vectơ \(\overrightarrow{b},\overrightarrow{c}\) không cùng phương nên \(x=\frac{p\left(1-n\right)}{1-np}\) và \(y=\frac{1-p}{1-np}\)

Do đó :

\(\overrightarrow{AO}=\frac{p\left(1-n\right)}{1-np}.\overrightarrow{b}+\frac{n\left(1-p\right)}{1-np}.\overrightarrow{c}\)

Suy ra :

\(\left(1-np\right).\overrightarrow{OM}=\left(1-np\right)\left(\overrightarrow{AM}-\overrightarrow{AO}\right)=np\left(1-p\right)\overrightarrow{b}+np\left(1-n\right)\overrightarrow{c}\)

\(\Rightarrow\frac{1-np}{np}.\overrightarrow{OM}=\left(\overrightarrow{b}+\overrightarrow{c}\right)-\left(n\overrightarrow{c}+p\overrightarrow{b}\right)\)

Hay

\(\overrightarrow{AM}=np\overrightarrow{AD}+\left(1-np\right)\overrightarrow{AO}\)

Trong đó D là điểm thỏa mãn \(\overrightarrow{AD}=\overrightarrow{b}+\overrightarrow{c}\) Từ đó, đường thẳng OM luôn đi qua D cố định (D là đỉnh thứ tư của hình bình hàng ABDC)