chứng minh bằng pp quy nạp \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(n=1\Rightarrow1< 2\sqrt{1}\) (đúng)
Với \(n=2\Rightarrow1+\frac{1}{\sqrt{2}}< 2\sqrt{2}\Rightarrow\sqrt{2}< 3\) (đúng)
Giả sử đúng với \(n=k\) hay \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{k}}< 2\sqrt{k}\)
Ta cần chứng minh \(1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}< 2\sqrt{k+1}\)
Thật vậy, ta có:
\(VT=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}< 2\sqrt{k}+\frac{1}{\sqrt{k+1}}\)
\(VT< \frac{2\sqrt{k\left(k+1\right)}+1}{\sqrt{k+1}}< \frac{k+k+1+1}{\sqrt{k+1}}=2\sqrt{k+1}\) (đpcm)
Vậy ....
P/s: \(2\sqrt{k\left(k+1\right)}< k+\left(k+1\right)\) theo BĐT Cô-si
Lời giải:
Xét số hạng tổng quát:
\(\frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}=\frac{1}{(\sqrt{n}+\sqrt{n+1})[n+\sqrt{n(n+1)}+n+1)]}=\frac{(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})}{(\sqrt{n}+\sqrt{n+1})[n+\sqrt{n(n+1)}+n+1)]}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{n+(n+1)-\sqrt{n(n+1)}}<\frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n(n+1)}-\sqrt{n(n+1)}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n(n+1)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Do đó:
\(\frac{1}{2\sqrt{2}+1\sqrt{1}}< \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
\(\frac{1}{3\sqrt{3}+2\sqrt{2}}< \frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
......
\(\frac{1}{(n+1)\sqrt{n+1}+n\sqrt{n}}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Cộng theo vế:
\(\Rightarrow \text{VT}< 1-\frac{1}{\sqrt{n+1}}\) (đpcm)