Rút gọn
\(\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\left(\frac{2}{2a-b}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\left(\frac{-2\left(b+2a\right)}{\left(b-2a\right)\left(b+2a\right)}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4\left(b-2a\right)}{\left(2a+b\right)\left(b-2a\right)}\right):\left(\frac{a\left(4a^2-b^2\right)}{4a^2-b^2}+\frac{4a^2+b^2}{4a^2-b^2}\right)\)
\(=\frac{-2b-4a+6b-4b+8a}{\left(b-2a\right)\left(b+2a\right)}:\frac{4a^3-ab^2+4a^2+b^2}{4a^2-b^2}\)
\(=\frac{4a}{\left(b-2a\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)
\(=\frac{-4a}{\left(2a-b\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)
\(=.\frac{-4a}{4a^3-ab^2+4a^2+b^2}\)
b) ĐKXĐ: \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)
Ta thấy \(a=\frac{1}{3};b=2\)thỏa mãn điều kiện \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)nên thay vào A ta được:
bạn thay vào tự tính nhé mà cái phần rút gọn bạn vừa làm vừa check giùm bài mik nhé =)) sợ sai
Hắc hắc :P Cứ làm từ từ sẽ thành công em ạ :D
\(=\frac{a+b+a-b}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{2a\left(a^2+b^2\right)+2a\left(a^2-b^2\right)}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{4a^3\left(a^4+b^4\right)+4a^3\left(a^4-b^4\right)}{a^8-b^8}+\frac{8a^7}{a^8+b^8}\)
\(=\frac{8a^7\left(a^8+b^8\right)+8a^7\left(a^8-b^8\right)}{\left(a^8-b^8\right)\left(a^8+b^8\right)}\)
\(=\frac{16a^{15}}{a^{16}-b^{16}}\)
Xet \(M-1=a+\frac{2a+2}{2-b}-\left(\frac{2a-b}{2+b}+1\right)+\frac{4a}{b^2-4}\)
=\(a+\left(2a+2\right)\left(\frac{1}{2-b}-\frac{1}{2+b}\right)+\frac{4a}{b^2-4}\)
=\(\frac{ab^2-4a-4ab-4b+4a}{b^2-4}\)
=\(\frac{ab^2-4ab-4b}{b^2-4}\)
den doan nay em xet rieng tu so \(ab^2-4ab-4b\)
thay b=a/a+1 vao \(\frac{a^3}{\left(a+1\right)^2}-\frac{4a^2}{a+1}-\frac{4}{a+1}\)
=\(\frac{a\left(a+2\right)\left(-3a-2\right)}{\left(a+1\right)^2}\)
xet mau so b^2-4=(a/a+1)^-4
=\(\frac{\left(a+2\right)\left(-3a-2\right)}{\left(a+1\right)^2}\)
den day thay vao la xong nha
\(\frac{\sqrt{3x^2+6xy+3y^2}}{x^2-y^2}\)
<=>\(\frac{\sqrt{3.\left(x+y\right)^2}}{\left(x-y\right).\left(x+y\right)}\)
<=>\(\frac{\sqrt{3}\left|x+y\right|}{\left(x-y\right).\left(x+y\right)}.\)
<=>\(\frac{\sqrt{3}}{x-y}\)
Sửa lại đề bài: 1 / 2a- b
( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)
mới lm đc nhé bn!
a) ĐKXĐ: bn tự lm nhé !
bn biến đổi: 2a3-b+2a-a2b = (2a-b) + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1)
rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0
\(M=a+\frac{\left(2a+b\right)\left(2+b\right)-\left(2a-b\right)\left(2-b\right)}{4-b^2}-\frac{4a}{4-b^2}.\)
\(=a+\frac{4b\left(a+1\right)-4a}{4-b^2}\)
Ta có \(4ab+4b-4a=4\left[\frac{a^2}{a+1}+\frac{a}{a+1}-4a\right]=-12a\)
\(4-b^2=4-\frac{a^2}{\left(a+1\right)^2}=\frac{4\left(a^2+2a+1\right)-a^2}{\left(a+1\right)^2}=\frac{3a^2+8a+4}{\left(a+1\right)^2}\)
\(\Rightarrow M=a+\frac{-12a\left(a+1\right)^2}{3a^2+8a+4}\)
\(=-\frac{9a^3+16a^2+8a}{3a^2+8a+4}\)
\(M=a+\frac{2a+b}{2-b}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)
\(=a-\frac{2a+b}{b-2}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)
\(=a-\frac{\left(2a+b\right)\left(2+b\right)+\left(2a-b\right)\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}+\frac{4a}{b^2-4}\)
\(=a-\frac{4b\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a-\frac{4\frac{a}{a+1}\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a-\frac{4a}{b^2-4}+\frac{4a}{b^2-4}\)
\(=a\)