K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2023

Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.

2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m

Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11

Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.

Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.

Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …

Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.

  
29 tháng 6 2023

nhưng mà đề bài là 2n+11 chia hết cho 2k-1 chứ không phải 2n+11 chia hết cho 2k-1.

 

3 tháng 1 2016

4788

2 tháng 1 2015

 Giả sử 
(7n+2,2n+1) =k với k# 3 
=> (7n+2, 3(2n+1)) =k (do k #3) 
=> [7n+2 -3(2n+1), 2n+1] =k 
=> (n-1, 2n+1) =k (*) 

Mặt khác k lẻ do 2n +1 lẻ 

Từ (*) => (2n+1, 2n-2) =k 
=> [2n+ 1, (2n+1) -(2n-2)] =k 
=> (2n+1,3) =k 

do k # 3 => k=1 

Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau 

Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3 

=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau 

Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài) 

Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau

25 tháng 3 2015

Giả sử 
(7n+2,2n+1) =k với k# 3 
=> (7n+2, 3(2n+1)) =k (do k #3) 
=> [7n+2 -3(2n+1), 2n+1] =k 
=> (n-1, 2n+1) =k (*) 

Mặt khác k lẻ do 2n +1 lẻ 

Từ (*) => (2n+1, 2n-2) =k 
=> [2n+ 1, (2n+1) -(2n-2)] =k 
=> (2n+1,3) =k 

do k # 3 => k=1 

Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau 

Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3 

=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau 

Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài) 

Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau

xin lỗi vì cái này mình ko tự làm, nhưng mà bạn có thể tham khảo đấy

25 tháng 3 2015

thank you trần như

  Giả sử 
(7n+2,2n+1) =k với k# 3 
=> (7n+2, 3(2n+1)) =k (do k #3) 
=> [7n+2 -3(2n+1), 2n+1] =k 
=> (n-1, 2n+1) =k (*) 

Mặt khác k lẻ do 2n +1 lẻ 

Từ (*) => (2n+1, 2n-2) =k 
=> [2n+ 1, (2n+1) -(2n-2)] =k 
=> (2n+1,3) =k 

do k # 3 => k=1 

Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau 

Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3 

=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau 

Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài) 

Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau

Tick nhé Nguyen Thi Le Giang

22 tháng 1 2016

Giả sử 
(7n+2,2n+1) =k với k# 3 
=> (7n+2, 3(2n+1)) =k (do k #3) 
=> [7n+2 -3(2n+1), 2n+1] =k 
=> (n-1, 2n+1) =k (*) 

Mặt khác k lẻ do 2n +1 lẻ 

Từ (*) => (2n+1, 2n-2) =k 
=> [2n+ 1, (2n+1) -(2n-2)] =k 
=> (2n+1,3) =k 

do k # 3 => k=1 

Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau 

Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3 

=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau 

Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài) 

Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau